[1]Yenduri, G., Srivastava, G., Maddikunta, P. K. R., Jhaveri, R. H., Wang, W., Vasilakos, A. V., & Gadekallu, T. R. (2023). Generative pre-trained transformer: A comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions. arXiv preprint arXiv:2305.10435.
[2]Asudani, D. S., Nagwani, N. K., & Singh, P. (2023). Impact of word embedding models on text analytics in deep learning environment: a review. Artificial intelligence review, 56(9), 10345-10425.
[3]經濟部智慧財產局. 中華民國專利資訊檢索系統. from https://twpat1.tipo.gov.tw/twpatc/twpatkm
[4]經濟部智慧財產局. 認識專利. from https://topic.tipo.gov.tw/patents-tw/cp-784-873246-9d957-101.html
[5]Adamopoulou, E., & Moussiades, L. (2020). An overview of chatbot technology. Paper presented at the IFIP international conference on artificial intelligence applications and innovations.
[6]Zhang, C., & Lu, Y. (2021). Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration, 23, 100224.
[7]Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[8]Chowdhary, K., & Chowdhary, K. (2020). Natural language processing. Fundamentals of artificial intelligence, 603-649.
[9]Lee, S., Jang, H., Baik, Y., Park, S., & Shin, H. (2020). Kr-bert: A small-scale korean-specific language model. arXiv preprint arXiv:2008.03979.
[10]Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., . . . Xu, Y. (2022). A survey on vision transformer. IEEE transactions on pattern analysis and machine intelligence, 45(1), 87-110.
[11]Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
[12]Wettig, A., Gao, T., Zhong, Z., & Chen, D. (2022). Should you mask 15% in masked language modeling? arXiv preprint arXiv:2202.08005.
[13]Yang, M. (2020). ckiplab/bert-base-chinese. from https://huggingface.co/ckiplab/bert-base-chinese
[14]Yang, M. (2020). ckiplab/albert-base-chinese. from https://huggingface.co/ckiplab/albert-base-chinese
[15]Iz Beltagy, M. E. P., Arman Cohan. (2020). Longformer: The Long-Document Transformer. from https://huggingface.co/transformers/v3.0.2/model_doc/longformer.html
[16]Yang, M. (2020). bert-base-chinese. from https://huggingface.co/bert-base-chinese
[17]Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The long-document transformer. arXiv preprint arXiv:2004.05150.
[18]Nasteski, V. (2017). An overview of the supervised machine learning methods. Horizons. b, 4(51-62), 56.
[19]James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). Unsupervised learning An Introduction to Statistical Learning: with Applications in Python (pp. 503-556): Springer.
[20]Yang, X., Song, Z., King, I., & Xu, Z. (2022). A survey on deep semi-supervised learning. IEEE Transactions on Knowledge and Data Engineering.
[21]Kumari, R., & Srivastava, S. K. (2017). Machine learning: A review on binary classification. International Journal of Computer Applications, 160(7).
[22]Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for multi-class classification: an overview. arXiv preprint arXiv:2008.05756.
[23]Tan, Q., Yu, Y., Yu, G., & Wang, J. (2017). Semi-supervised multi-label classification using incomplete label information. Neurocomputing, 260, 192-202.
[24]Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S., Hardt, M., Miller, J., & Schmidt, L. (2019). A meta-analysis of overfitting in machine learning. Advances in Neural Information Processing Systems, 32.
[25]Düntsch, I., & Gediga, G. (2019). Confusion matrices and rough set data analysis. Paper presented at the Journal of Physics: Conference Series.
[26]Havrlant, L., & Kreinovich, V. (2017). A simple probabilistic explanation of term frequency-inverse document frequency (tf-idf) heuristic (and variations motivated by this explanation). International Journal of General Systems, 46(1), 27-36.
[27]Hofmann, T. (1999). Probabilistic latent semantic indexing. Paper presented at the Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval.
[28]Brand, M. (2006). Fast low-rank modifications of the thin singular value decomposition. Linear Algebra and its Applications, 415(1), 20-30. doi: https://doi.org/10.1016/j.laa.2005.07.021
[29]Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
[30]Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Computing Surveys, 55(9), 1-35.
[31]Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., . . . Bhosale, S. (2023). Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288.
[32]Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebrón, F., & Sanghai, S. (2023). Gqa: Training generalized multi-query transformer models from multi-head checkpoints. arXiv preprint arXiv:2305.13245.
[33]蔡孟純. (2023). 基於BERT模型的專利相似度計算:以台灣金融科技專利為例. (碩士), 國立政治大學, 台北市. Retrieved from https://hdl.handle.net/11296/m6jxay 臺灣博碩士論文知識加值系統 database.[34]吳柏成. (2022). 以BERT為基之中文文件相似度計算—應用於專利文件之分類與分群. (碩士), 國立屏東大學, 屏東縣. Retrieved from https://hdl.handle.net/11296/awwk2z 臺灣博碩士論文知識加值系統 database.[35]戴余修. (2021). 基於BERT預訓練模型的專利檢索方法. (碩士), 國立臺灣大學, 台北市. Retrieved from https://hdl.handle.net/11296/6sc56k 臺灣博碩士論文知識加值系統 database.[36]PyPI. Selenium. from https://pypi.org/project/selenium/
[37]經濟部智慧財產局. 專利公開資訊查詢. from https://tiponet.tipo.gov.tw/S092_OUT/out