|
[1]Ellabban, Omar; Abu-Rub, Haitham; Blaabjerg, Frede (2014). "Renewable energy resources: Current status, future prospects and their enabling technology". Renewable and Sustainable Energy Reviews. 39: 748–764 [749]. doi:10.1016/j.rser.2014.07.113. [2]Heinberg, R.; Fridley, D. Our Renewable Future: Laying the Path for One Hundred Percent Clean Energy; Island Press/Center for Resource Economics: Washington, DC, USA, 2016; pp. 1–15, ISBN-13: 978-1-61091-780-3. [3]Krijnen D, Dekker C, “AR Drone 2.0 with Subsumption Architecture”, In Artificial intelligence research seminar, 2014. [4]Cavoukian A, “Privacy and drones: Unmanned aerial vehicles”, Information and Privacy Commissioner of Ontario, Canada; 2012. [5]Gupta, S.G., Ghonge, M.M. and Jawandhiya, P.M., “Review of unmanned aircraft system (UAS)”, Technology, vol. 2, No. 4, 2013. [6]MoD UK. “Joint Doctrine Note 2/11 the UK Approach to Unmanned Aircraft Systems. UK MoD The Development, Concepts and Doctrine Centre”, SWINDON, Wiltshire, 2011. [7]Bachmann, R. J., Boria, F. J., Vaidyanathan, R., Ifju, P. G., and Quinn, R. D., “A biologically inspired micro-vehicle capable of aerial and terrestrial locomotion”, Mechanism and Machine Theory, Vol. 44, pp. 513-526, 2009. [8]Hassanalian, M., Khaki, H., Khosrawi, M., “A new method for design of fixed wing micro air vehicle”, Proceedings of the Institution of Mechanical Engineers, Journal of Aerospace Engineering, Vol. 229, pp. 837-850, 2014. [9]Hassanalian, M., Abdelkefi, A., Wei, M., and Ziaei-Rad, S., “A novel methodology for wing sizing of bio-inspired flapping wing micro air vehicles: theory and prototype”, Acta Mech (2016). doi:10.1007/s00707-016-1757-4v. [10]Radmanesh, M., Hassanalian, M., Feghhi, S.A., Niliahmadabadi, M., “Numerical Investigation of Azarakhsh MAV”, Proceeding of International Micro Air Vehicle 2012 Conference (IMAV2012), Braunschweig, Germany, 3-6 July. [11]McMichael, J. M., and Francis M. S, “Micro air vehicles – toward a new generation of flight”, http://www.darpa.mil/tto/mav/mav_auvsi.html [12]Sibilski, K., “Dynamics of micro-air vehicle with flapping wings”, ActaPolytechnica, Vol. 44, 2004. [13]Binenko, V.I., Andreev, V.L., and Ivanov, R.V., “Remote sensing of environment on the base of the microavition", 31st International Symposium on Remote Sensing of Environment, Saint Petersburg, Russia, 20-24 May 2005. [14]Sitnikov, N., Borisov; Y., Akmulin; D., Chekulaev, I., Efremov, D., Sitnikova, V., Ulanovsky, A., and Popovicheva, O., “Unmanned aerial vehicles (UAV) in atmospheric research and satellite validation”, 40th COSPAR Scientific Assembly., Moscow, Russia, 2-10 August, 2014. [15]Watts, A.C., Ambrosia, V.G., and Hinkley, E.A., “Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use”, Remote Sensing, vol. 4, no. 6, pp.1671-1692, 2012. [16]Hassanalian, M. and Abdelkefi, A., “Design, manufacturing, and flight testing of a fixed wing micro air vehicle with Zimmerman planform”, Meccanica, pp.1-18, 2016, doi:10.1007/s11012-016-0475-2/ [17]https://en.wikipedia.org/wiki/De_Bothezat_helicopter [18]https://en.wikipedia.org/wiki/Cierva_W.11_Air_Horse [19]Joshi, P.M., "Wing Analysis of a Flapping Wing Unmanned Aerial Vehicle Using CFD", International Journal of Advance Engineering and Research Development, Vol. 2, No. 5, pp. 216-221, 2015. [20]Schauwecker, K., Ke, N.R., Scherer, S.A. and Zell, A., “Markerless visual control of a quad-rotor micro aerial vehicle by means of on-board stereo processing”, In Autonomous Mobile Systems, Springer Berlin Heidelberg, 2012. [21]Charavgis, F., “Monitoring and assessing concrete bridges with intelligent techniques”, Doctoral dissertation, TU Delft, Delft University of Technology, 2016. [22]Han, W.J., Lei, Y.H. and Zhou, X.W., “Application of Unmanned Aerial Vehicle Survey in Power Grid Engineering Construction”, Electric Power Survey & Design, Vol. 3, p.019, 2010. [23]Austin, R., “Unmanned aircraft systems: UAVS design, development and deployment”, Vol. 54, John Wiley & Sons, 2011 [24]Zakora, B., Molodchick, A., “Classification of UAV (Unmanned Aerial Vehicle)”, Retrieved from http://read.meil.pw.pl/abstracts/Student Abstract_Zakora_ Molodchik.pdf. [cited January 2014]. [25]Turanoguz, E., “Design of a medium range tactical UAV and improvement of its performance by using winglets”, Master of Science dissertation in Aerospace Engineering Department, Middle East Technical University, 2014. [26]Hockley, C. and Butka, B., “The SamarEye: A biologically inspired autonomous vehicle”, In Digital Avionics Systems Conference (DASC), 2010 IEEE/AIAA 29th, Salt Lake City, UT, USA, October 2010. [27]Tafreshi, M., Shafieenejad, I. and Nikkhah, A.A., “Open-Loop and ClosedLoop Optimal Guidance Policy for Samarai Aerial Vehicle with Novel Algorithm to Consider Wind Effects”, International Journal of Engineering and Technical Research (IJETR), Vol. 2, No. 12, 2014 [28]Ubaya, H. and Iqbal, M., “First Person View on Flying Robot For Real Time Monitoring”, ICON-CSE, Vol. 1, No. 1, pp.41-44, 2015. [29]O'Connor, R., “Developing a Multirotor UAV Platform to Carry Out Research Into Autonomous Behaviours, Using On-board Image Processing Techniques”, BE Thesis, Faculty of Engineering, Computing and Mathematics, University of Western Australia, 2013. [30]Cai, G., Dias, J. and Seneviratne, L., “A survey of small-scale unmanned aerial vehicles: Recent advances and future development trends”, Unmanned Systems, vol. 2, no. 02, pp.175-199, 2014. [31]Houghton, J. and Hoburg, W., “Fly-by-wire Control of a Monocopter”, Massachusetts Inst. of Technology TR-16.622, Cambridge, MA, pp.1-36, 2008. [32]https://spinoff.nasa.gov/Spinoff2010/t_4.html [33]http://myfirstdrone.com/tutorials/best-multirotor-frame/ [34]http://bilgi-birikimi.blogspot.com/2011/05/taktik-operasyonlaricin-goruntuleme.html [35]http://www.directindustry.com/industrial-manufacturer/mini-uav-102095.html [36]https://www.entrepreneur.com/article/230733 [37]http://raffaello.name/projects/distributed-flight-array/ [38]http://www.71668.net/stupian/1857/hangpaifeixingqijiage/ [39]https://en.wikipedia.org/wiki/Edward_Weston_(chemist) [40]https://en.wikipedia.org/wiki/Albert_Einstein [41]V. E. Lashkaryov, Investigation of a barrier layer by the thermoprobe method, Izv. Akad. Nauk SSSR, Ser. Fiz. 5, 442–446 (1941), English translation: Ukr. J. Phys. 53, 53–56 (2008) [42]https://en.wikipedia.org/wiki/Russell_Ohl [43]https://en.wikipedia.org/wiki/Kurt_Lehovec [44]April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar Cell". [45]Black, Lachlan E. (2016). New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface (PDF). Springer. p. 13. ISBN 9783319325217. Archived (PDF) from the original on 2021-03-04. Retrieved 2019-10-05. [46]Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 120& 321-323. ISBN 9783540342588. [47]https://en.wikipedia.org/wiki/Vanguard_1 [48]https://en.wikipedia.org/wiki/Solar_cell [49]Saavedra, S. G. (2016). Analysis and simulation of shading effects on photovoltaic cells.(Master's thesis, University of Gävle, Gävle). [50]khelifi, S. (2010). Effect of Impurities and Defects on Performance and Degradation. University abou bekr belkaid-Tlemcen [51]Narkhede, S. (2010). MODELING OF PHOTOVOLTAIC ARRAY. Department of Electrical Engineering, National Institute of Technology, Rourkela [52]Alternative Energy Tutorials. (2018). Solar Cell I-V Characteristic. Retrieved 2019 February 20 from http://www.alternative-energy-tutorials.com/energy-articles/solar-cell-i-v-characteristic.html [53]köntges, M., Ulrike, J., Berger, K. A., Kato, K., Friesen, T., Haitao, L., & Iseghem, M. V. (2014). Review of Failures of Photovoltaic Modules (Report IEA-PVPS T13-01:2014). PVPS [54]ee Publisher. (2018). Solar PV module faults and failings. Retrived 2019 april 3 from https://www.ee.co.za/article/solar-pv-module-faults-failings.html [55]DeGraaff, D., Lacerda, R., & Campeau, Z. (2011). Degradation Mechanisms in Si,Module Technologies Observed in the Field; Their Analysis and Statistics, Presentation at PV Module Reliability Workshop, NREL, Denver, Golden, USA [56]Dhimish, M., Holmes, V., Mehrdadi, B., & Dales, M. (2017). The impact of cracks on photovoltaic power performance. Advanced Materials and Devices, 2, 199-209 [57]Käsewieter, J., Haase, F., Larrodé, M. H., & Köntges, M. (2014). Cracks in Solar Cell Metallization Leading to Module Power Loss under Mechanical Loads. Energy Procedia, 55, 469-477 [58]Kunze, I., Köntges, M., & Kajari-Schröder, S. (2012). Crack Statistic for Wafer-Based Silicon Solar Cell Modules in the Field Measured by UV Fluorescence. IEEE Journal of Photovoltaics, 3, 95 - 101. [59]Peled, A.; Appelbaum, J. Minimizing the current mismatch resulting from different locations of solar cells within a PV module by proposing new interconnections. Solar Energy 2016, 135, 840–847. [60]Köntges, M.; Kurtz, S.; Packard, C.; Jahn, U.; Berger, K.; Kato, K.; Friesen, T.; Liu, H.; Iseghem, M. Review of Failures of Photovoltaic Modules; IEA-PVPS Report; International Energy Agency: Paris, France, 2014; ISBN 978-3-906042-16-9 [61]Forniés, E.; Naranjo, F.; Mazo, M.; Ruiz, F. The influence of mismatch of solar cells on relative power loss of photovoltaic modules. Solar Energy 2013, 97, 39–47. [62]Djordjevic, S.; Parlevliet, D.; Jennings, P. Detectable faults on recently installed solar modules in Western Australia. Renew. Energy 2013, 67, 1–7. [63]Lopez-Garcia, J.; Pozza, A.; Sample, T. Long-term soiling of silicon PV modules in a moderate subtropical climate. Solar Energy 2016, 130, 174–183 [64]Piliougine Rocha, M.; Carretero Rubio, J.E.; Sidrach-de-Cardona, M.; Montiel, D.; Sánchez-Friera, P. Comparative analysis of the dust losses in photovoltaic modules with different cover glasses. In Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 1–5 September 2008; pp. 2698–2700 [65]Mani, M.; Pillai, R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew. Sustain. Energy Rev. 2010, 14, 3124–3131. [66]Meyer, S.; Richter, S.; Timmel, S.; Gläser, M.; Weerner, M.; Swatek, S.; Hagendorf, C. Snail trails: Root cause analysis and test procedures. Energy Procedia 2013, 38, 498–505 [67]Quarter, P.B.; Grimaccia, F.; Leva, S.; Musseta, M.; Aghaei, M. Light Unmanned Aerial Vehicles (UAVs) for Cooperative Inspection of PV Plants. IEEE J. Photov. 2014, 4, 1107–1113 [68]Bun, L. Détection et Localisation de Défauts Dans un Système Photovoltaïque. Ph.D. Thesis, Université de Grenoble, Grenoble, France, 2011 [69]Mayfield, R. Photovoltaic Design & Installation for Dummies; Wiley: Hoboken, NJ, USA, 2010; ISBN 978-0-470-59893-1. [70]Tsanakas, A.; Long, D.H.; Al-Shakarchi, F. Advanced inspection of photovoltaic installations by aerial triangulation and terrestrial georeferencing of thermal/visual imagery. Renew. Energy 2016, 102, 224–233. [71]Mansouri, A.; Zettl, M.; Mayer, O.; Lynass, M.; Bucher, M.; Stern, O.; Burhenne, R. Defect Detection in Photovoltaic Modules Using Electroluminescence Imaging. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 24–28 September 2012; pp. 3374–3378 [72]Ebner, R.; Zamini, M.; Újvári, G. Defect analysis in different photovoltaic modules using electroluminescence (EL) and infrared thermography (IR). In Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, 6 September 2010; pp. 333–336. [73]Minkina, W.; Dudzik, S. Infrared Thermography: Errors and Uncertainties; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-74718-6 [74]Brébec, J.; Desmarais, T.; Favier, A.; Ménétrier, M.; Noël, B.; Noël, R.; Orsini, C.; Vanhaecke, J. Thermodynamique 2ème Année MP-MP* PC-PC* PSI-PSI* PT-PT*; Hachette: Paris, France, 2012; ISBN-10: 201145641X. [75]Modest, M.F. Radiative Heat Transfer; Elsevier: Amsterdam, The Netherlands, 2013; ISBN-13: 978-0123869449/ISBN-10: 0123869447. [76]Aghaei, M.; Dolara, A.; Leva, S.; Grimaccia, F. Image Resolution and Defects Detection in PV Inspection by Unmanned Technologies. In Proceedings of the IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5. [77]Mayekar, P.; Kotmire, N.; Wagh, M.; Shinde, N. Review on the Thermographic Analysis of PV panels/system using the infrared thermal cameras. Int. J. Sci. Eng. Appl. Sci. 2016, 2, 135–139. [78]Tošer, P.; Baˇca, P.; Neoral, J. The Ways How to Measure the Characteristics of a Solar Panel. ECS Trans. 2014, 48, 297–302. [79]Coello, J.; Perez, L.; Parral, V.; Gomez, R. Implementation of Aerial Thermography Inspection of PV Modules in the O&M Activities in Large PV Plants. In Proceedings of the 32st European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, 20–24 June 2016; pp. 1730–1735. [80]Hassanalian, Mostafa. "Wing Shape Design and Kinematic Optimization of Bio-inspired Nano Air Vehicles for Hovering and Forward Flight Purposes." PhD diss., New Mexico State University, 2016. [81]Wang, Y.; Itako, K.; Kudoh, T.; Koh, K.; Ge, Q. Voltage-based hot-spot detection method for photovoltaic string using a projector. Energies 2017, 10, 230 [82]Abideen Afridi, M.; Arbab, M.; Bilal, M.; Ullah, M.; Ullah, N. Determining the effect of soiling and dirtparticles at various tilt angles of photovoltaic modules. Int. J. Eng. Works 2017, 4, 143–146. [83]https://thermalcapture.com/flir-duo-pro-r/ [84]https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/ [85]https://ardupilot.org/copter/docs/common-thecubeorange-overview.html [86]https://ardupilot.org/copter/docs/common-pixhawk-overview.html [87]https://www.yen.com/sky-eye-duo-pro-3-axis-drone-gimbal-for-flir-duo-pro-r-thermal-camera/
|