|
Bauer, P., Heckler, L., Worack, M., Magaña, A., & Reinhart, G., 2021, Registration strategy of point clouds based on region-specific projections and virtual structures for robot-based inspection systems, Measurement, Vol. 185, pp. 109963. Bu, L., Zhang, Y., Liu, H., Yuan, X., Guo, J., & Han, S., 2021, An IIoT-driven and AI-enabled framework for smart manufacturing system based on three-terminal collaborative platform, Advanced Engineering Informatics, Vol. 50, pp. 101370. Chang, Q., & Xiong, Z., 2020, Vision-aware target recognition toward autonomous robot by Kinect sensors, Signal Processing: Image Communication, Vol. 84, pp. 115810. Chen, L., Huang, P., & Meng, Z., 2019, Convolutional multi-grasp detection using grasp path for RGBD images, Robotics and Autonomous Systems, Vol. 113, pp. 94-103. Han, X., Dong, Z., & Yang, B., 2021, A point-based deep learning network for semantic segmentation of MLS point clouds, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 175, pp.199-214. Hietanen, A., Latokartano, J., Foi, A., Pieters, R., Kyrki, V., Lanz, M., & Kämäräinen, J. K., 2021, Benchmarking pose estimation for robot manipulation, Robotics and Autonomous Systems, Vol. 143, pp. 103810. Le, T. T., Le, T. S., Chen, Y. R., Vidal, J., & Lin, C. Y., 2021, 6D pose estimation with combined deep learning and 3D vision techniques for a fast and accurate object grasping, Robotics and Autonomous Systems, Vol. Lei, H., Jiang, G., & Quan, L., 2017, Fast descriptors and correspondence propagation for robust global point cloud registration, IEEE Transactions on Image Processing, Vol. 26, No.8, pp. 3614-3623. 141, pp. 103775. Namjoshi, J., & Rawat, M., 2022, Role of smart manufacturing in industry 4.0, Materials Today: Proceedings. Qi, S., Ning, X., Yang, G., Zhang, L., Long, P., Cai, W., & Li, W., 2021, Review of multi-view 3D object recognition methods based on deep learning, Displays, Vol. 69, pp. 102053. Ramisa, A., Alenyà, G., Moreno-Noguer, F. & Torras, C, 2016, A 3D descriptor to detect task-oriented grasping points in clothing, Pattern Recognition, Vol. 60, pp. 936-948. Rusu, R. B., Blodow, N., & Beetz, M., 2009, Fast point feature histograms (FPFH) for 3D registration, 2009 IEEE international conference on robotics and automation pp. 3212-3217. Shi, P., Qi, Q., Qin, Y., Scott, P. J., & Jiang, X., 2022, Highly interacting machining feature recognition via small sample learning. Robotics and Computer-Integrated Manufacturing, Vol. 73, pp. 102260. Song, Y., He, F., Duan, Y., Liang, Y., & Yan, X., 2022, A Kernel Correlation-Based Approach to Adaptively Acquire Local Features for Learning 3D Point Clouds, Computer-Aided Design, Vol. 146, pp. 103196. Srivastava, S., & Lall, B., 2019, Deeppoint3d: Learning discriminative local descriptors using deep metric learning on 3d point clouds, Pattern Recognition Letters, Vol. 127, pp. 27-36. Tao, Y., & Zhou, J., 2017, Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking, Computers and Electronics in Agriculture, Vol. 142, pp. 388-396. Wei, P., Yan, L., Xie, H., & Huang, M., 2022, Automatic coarse registration of point clouds using plane contour shape descriptor and topological graph voting, Automation in Construction, Vol. 134, pp. 104055. Xin, M., Li, B., Wei, X., & Zhao, Z., 2021, Rapid registration method by using partial 3D point clouds, Optik, Vol. 246, pp. 167764. Yang, L., Liu, Y., Peng, J., & Liang, Z., 2020, A novel system for off-line 3D seam extraction and path planning based on point cloud segmentation for arc welding robot, Robotics and Computer-Integrated Manufacturing, Vol.64, pp. 101929. Yang, Y., Tang, R., Wang, J., & Xia, M., 2021, A hierarchical deep neural network with iterative features for semantic labeling of airborne LiDAR point clouds, Computers & Geosciences, Vol.157, pp. 104932. Zhou, Z., Li, L., Fürsterling, A., Durocher, H. J., Mouridsen, J., & Zhang, X., 2022, Learning-based object detection and localization for a mobile robot manipulator in SME production, Robotics and Computer-Integrated Manufacturing, Vol. 73, pp. 102229.
|