|
[1]He, J., Wen, T., Qian, S., Zhang, Z., Tian, Z., Zhu, J., Mu, J., Hou, X., Geng, W., Cho, J., Han, J., Chou, X., & Xue, C. (2018). Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system. Nano Energy, 43, 326–339. https://doi.org/10.1016/j.nanoen.2017.11.039 [2]Rasel, M. S. U., & Park, J.-Y. (2017). A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application. Applied Energy, 206, 150–158. https://doi.org/10.1016/j.apenergy.2017.07.109 [3]Ren, X., Fan, H., Wang, C., Ma, J., Lei, S., Zhao, Y., Li, H., & Zhao, N. (2017). Magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy. Nano Energy, 35, 233–241. https://doi.org/10.1016/j.nanoen.2017.03.047 [4]Wang, X., & Yang, Y. (2017). Effective energy storage from a hybridized electromagnetic-triboelectric nanogenerator. Nano Energy, 32, 36–41. https://doi.org/10.1016/j.nanoen.2016.12.006 [5]Dudem, B., Huynh, N. D., Kim, W., Kim, D. H., Hwang, H. J., Choi, D., & Yu, J. S. (2017). Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting. Nano Energy, 42, 269–281. https://doi.org/10.1016/j.nanoen.2017.10.040 [6]Dudem, B., Kim, D. H., & Yu, J. S. (2018). Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy. Nano Research, 11(1), 101–113. https://doi.org/10.1007/s12274-017-1609-0 [7]Dudem, B., Ko, Y. H., Leem, J. W., Lee, S. H., & Yu, J. S. (2015). Highly Transparent and Flexible Triboelectric Nanogenerators with Subwavelength-Architectured Polydimethylsiloxane by a Nanoporous Anodic Aluminum Oxide Template. ACS Applied Materials & Interfaces, 7(37), 20520–20529. https://doi.org/10.1021/acsami.5b05842 [8]Kim, D. H., Dudem, B., & Yu, J. S. (2018). High-Performance Flexible Piezoelectric-Assisted Triboelectric Hybrid Nanogenerator via Polydimethylsiloxane-Encapsulated Nanoflower-like ZnO Composite Films for Scavenging Energy from Daily Human Activities. ACS Sustainable Chemistry & Engineering, 6(7), 8525–8535. https://doi.org/10.1021/acssuschemeng.8b00834 [9]Mandal, D., Yoon, S., & Kim, K. J. (2011). Origin of Piezoelectricity in an Electrospun Poly(vinylidene fluoride-trifluoroethylene) Nanofiber Web-Based Nanogenerator and Nano-Pressure Sensor. Macromolecular Rapid Communications, 32(11), 831–837. https://doi.org/10.1002/marc.201100040 [10]Wang, Z. L., & Song, J. (2006). Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312(5771), 242–246. https://doi.org/10.1126/science.1124005 [11]Jiang, Y., Dong, K., Li, X., An, J., Wu, D., Peng, X., Yi, J., Ning, C., Cheng, R., Yu, P., & Wang, Z. L. (2021). Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skin-Like Highly Sensitive Self-Powered Haptic Sensors. Advanced Functional Materials, 31(1), 2005584. https://doi.org/10.1002/adfm.202005584 [12]Cheng, Y., Zhu, W., Lu, X., & Wang, C. (2022). Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy, 98, 107229. https://doi.org/10.1016/j.nanoen.2022.107229 [13]Xu, Z., Qiu, W., Fan, X., Shi, Y., Gong, H., Huang, J., Patil, A., Li, X., Wang, S., Lin, H., Hou, C., Zhao, J., Guo, X., Yang, Y., Lin, H., Huang, L., Liu, X. Y., & Guo, W. (2021). Stretchable, Stable, and Degradable Silk Fibroin Enabled by Mesoscopic Doping for Finger Motion Triggered Color/Transmittance Adjustment. ACS Nano, 15(7), 12429–12437. https://doi.org/10.1021/acsnano.1c05257 [14]Wang, Z. L., Chen, J., & Lin, L. (2015). Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy & Environmental Science, 8(8), 2250–2282. https://doi.org/10.1039/C5EE01532D [15]Wang, Z. L. (2015). Triboelectric nanogenerators as new energy technology and self-powered sensors – Principles, problems and perspectives. Faraday Discussions, 176(0), 447–458. https://doi.org/10.1039/C4FD00159A [16]Xi, Y., Wang, J., Zi, Y., Li, X., Han, C., Cao, X., Hu, C., & Wang, Z. (2017). High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy, 38, 101–108. https://doi.org/10.1016/j.nanoen.2017.04.053 [17]https://en.wikipedia.org/w/index.php?title=Van_der_Graaf_Generator&oldid=1206183947 [18]https://owlsmag.wordpress.com/2010/01/20/a-natural-history-devin-corbin/ [19]Lin, S., Xu, L., Xu, C., Chen, X., Wang, A. C., Zhang, B., Lin, P., Yang, Y., Zhao, H., & Wang, Z. L. (2019). Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal–Dielectric Case. Advanced Materials, 31(17), 1808197. https://doi.org/10.1002/adma.201808197 [20]McCarty, L. S., & Whitesides, G. M. (2008). Electrostatic Charging Due to Separation of Ions at Interfaces: Contact Electrification of Ionic Electrets. Angewandte Chemie International Edition, 47(12), 2188–2207. https://doi.org/10.1002/anie.200701812 [21]Xu, C., Zi, Y., Wang, A. C., Zou, H., Dai, Y., He, X., Wang, P., Wang, Y.-C., Feng, P., Li, D., & Wang, Z. L. (2018). On the Electron-Transfer Mechanism in the Contact-Electrification Effect. Advanced Materials, 30(15), 1706790. https://doi.org/10.1002/adma.201706790 [22]Wang, Z. L. (2017). On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Materials Today, 20(2), 74–82. https://doi.org/10.1016/j.mattod.2016.12.001 [23]Xing, F., Jie, Y., Cao, X., Li, T., & Wang, N. (2017). Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy. Nano Energy, 42, 138–142. https://doi.org/10.1016/j.nanoen.2017.10.029 [24]Lin, S., Xu, L., Xu, C., Chen, X., Wang, A. C., Zhang, B., Lin, P., Yang, Y., Zhao, H., & Wang, Z. L. (2019). Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal–Dielectric Case. Advanced Materials, 31(17), 1808197. https://doi.org/10.1002/adma.201808197 [25]McCarty, L. S., & Whitesides, G. M. (2008). Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angewandte Chemie (International Ed in English), 47(12), 2188–2207. https://doi.org/10.1002/anie.200701812 [26]Xu, C., Zi, Y., Wang, A. C., Zou, H., Dai, Y., He, X., Wang, P., Wang, Y.-C., Feng, P., Li, D., & Wang, Z. L. (2018). On the Electron-Transfer Mechanism in the Contact-Electrification Effect. Advanced Materials, 30(15), 1706790. https://doi.org/10.1002/adma.201706790 [27]Wang, Z. L. (2013). Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano, 7(11), 9533–9557. https://doi.org/10.1021/nn404614z [28]Niu, S., Wang, S., Lin, L., Liu, Y., Zhou, Y. S., Hu, Y., & Wang, Z. L. (2013). Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy & Environmental Science, 6(12), 3576–3583. https://doi.org/10.1039/C3EE42571A [29]Niu, S., & Wang, Z. L. (2015). Theoretical systems of triboelectric nanogenerators. Nano Energy, 14, 161–192. https://doi.org/10.1016/j.nanoen.2014.11.034 [30]Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y. S., Hu, Y., & Wang, Z. L. (2013). Theory of Sliding-Mode Triboelectric Nanogenerators. Advanced Materials, 25(43), 6184–6193. https://doi.org/10.1002/adma.201302808 [31]Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y. S., Hu, Y., & Wang, Z. L. (2014). Theoretical Investigation and Structural Optimization of Single-Electrode Triboelectric Nanogenerators. Advanced Functional Materials, 24(22), 3332–3340. https://doi.org/10.1002/adfm.201303799 [32]Niu, S., Liu, Y., Chen, X., Wang, S., Zhou, Y. S., Lin, L., Xie, Y., & Wang, Z. L. (2015). Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy, 12, 760–774. https://doi.org/10.1016/j.nanoen.2015.01.013 [33]Mishra, M., & Yagci, Y. (2008). Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, Second Edition. CRC Press. [34]Polytetrafluoroethylene—Introduction, Production, Applications, and FAQs. https://www.vedantu.com/chemistry/polytetrafluoroethylene [35]Mule, A. R., Dudem, B., & Yu, J. S. (2018). High-performance and cost-effective triboelectric nanogenerators by sandpaper-assisted micropatterned polytetrafluoroethylene. Energy, 165, 677–684. https://doi.org/10.1016/j.energy.2018.09.122 [36]Xu, Z., Zhang, D., Cai, H., Yang, Y., Zhang, H., & Du, C. (2022). Performance enhancement of triboelectric nanogenerators using contact-separation mode in conjunction with the sliding mode and multifunctional application for motion monitoring. Nano Energy, 102, 107719. https://doi.org/10.1016/j.nanoen.2022.107719 [37]Zhang, Z., Xu, Y., Wang, D., Yang, H., Guo, J., & Turng, L.-S. (2019). Enhanced performance of an expanded polytetrafluoroethylene-based triboelectric nanogenerator for energy harvesting. Nano Energy, 60, 903–911. https://doi.org/10.1016/j.nanoen.2019.04.034 [38]Dubaj. (2006). English: Structural formula of Teflon. Own work. https://commons.wikimedia.org/wiki/File:Teflon_structure.PNG [39]Varotto, A., Todaro, L., Vinodu, M., Koehne, J., Liu, G., & Drain, C. M. (2008). Self-organization of a new fluorous porphyrin and C60 films on indium-tin-oxide electrode. Chemical Communications, 40, 4921–4923. https://doi.org/10.1039/B806795C [40]Clark, E. S. (1999). The molecular conformations of polytetrafluoroethylene: Forms II and IV. Polymer, 40(16), 4659–4665. https://doi.org/10.1016/S0032-3861(99)00109-3 [41]Eby, R. K., Clark, E. S., Farmer, B. L., Piermarini, G. J., & Block, S. (1990). Crystal structure of poly(tetrafluoroethylene) homo- and copolymers in the high pressure phase. Polymer, 31(12), 2227–2237. https://doi.org/10.1016/0032-3861(90)90307-K [42]Feng, B., Fang, X., Wang, H.-X., Dong, W., & Li, Y.-C. (2016). The Effect of Crystallinity on Compressive Properties of Al-PTFE. Polymers, 8(10), Article 10. https://doi.org/10.3390/polym8100356 [43]Sperati, C. A., & Starkweather, H. W. (1961). Fluorine-containing polymers. II. Polytetrafluoroethylene. Fortschritte Der Hochpolymeren-Forschung, 465–495. https://doi.org/10.1007/BFb0050504
[44]Joshi, P., Gupta, S., Riley, P. R., Narayan, R. J., & Narayan, J. (2021). Liquid phase regrowth of 〈110〉 nanodiamond film by UV laser annealing of PTFE to generate dense CVD microdiamond film. Diamond and Related Materials, 117, 108481. https://doi.org/10.1016/j.diamond.2021.108481 [45]Mule, A. R., Dudem, B., & Yu, J. S. (2018). High-performance and cost-effective triboelectric nanogenerators by sandpaper-assisted micropatterned polytetrafluoroethylene. Energy, 165, 677–684. https://doi.org/10.1016/j.energy.2018.09.122
|