|
[1] 張正華(2007)。有機與塑膠太陽能電池。臺北市:五南。 [2] Smith, C. (1995). Revisiting Solar Power’s Past. Technology Review, 98(5), 38–47. [3] Timilsina, G. R., Kurdgelashvili, L., & Narbel, P. A. (2012). Solar Energy: Markets, Economics and Policies. Renewable and Sustainable Energy Reviews, 16(1), 449–465.doi:10.1016/j.rser.2011.08.009. [4] Tyagi, V. V., Rahim, N. A.A., Rahim, N. A., & Selvaraj, J. A./L. (2013). Progress in Solar PV Technology: Research and Achievement. Renewable and Sustainable Energy Reviews, 20, 443–461. doi:10.1016/j.rser.2012.09.028. [5] Vrielink, J. A. M., Tiggelaar, R. M., Gardeniers, J. G. E., & Lefferts, L. (2012). Applicability of X-Ray Fluorescence Spectroscopy as Method to Determine Thickness and Composition of Stacks of Metal Thin Films: A Comparison with Imaging and Profilometry. Thin Solid Films, 520(6), 1740–1744. doi:10.1016/j.tsf.2011.08.049 [6] Boutchich, M., Alvarez, J., Diouf, D., Cabarrocas, P. R. i, Liao, M., Masataka, I., … Kleider, J. (2012). Amorphous Silicon Diamond Based Heterojunctions with High Rectification Ratio. Journal of Non-Crystalline Solids, 358(17), 2110–2113. doi:10.1016/j.jnoncrysol.2011.12.067 [7] Mah , O. (1998). Fundamentals of Photovoltaic Materials. NSPRI. [8] Hegedus, S. S., & Mccandless, B. E. (2005). CdTe Contacts for CdTe/CdS Solar Cells: Effect of Cu Thickness, Surface Preparation and Recontacting on Device Performance and Stability. Solar Energy Materials and Solar Cells, 88(1), 75–79. doi:10.1016/j.solmat.2004.10.010 [9] Fromer, N., Eggert, R. G., & lifton, J. (Eds.). (2011). Critical Materials for Sustainable Energy Applications. California: Resnick Institute. [10] Repins, I., Contreras, M. A., Egaas, B., Dehart, C., Scharf, J., Perkins, C. L., … Noufi, R. (2008). 19·9%-Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81·2% Fill Factor. Progress in Photovoltaics, 16(3), 235–239. doi:10.1002/pip.822 [11] Goetzberger, A., Hebling, C., & Schock, H. (2003). Photovoltaic Materials, History, Status and Outlook. Materials Science and Engineering: R: Reports, 40(1), 1–46. doi:10.1016/S0927-796X(02)00092-X [12] Gorter, T., & Reinders, A. H. M. E. (2012). A Comparison of 15 Polymers for Application in Photovoltaic Modules in PV-Powered Boats. Applied Energy, 92, 286–297. doi:10.1016/j.apenergy.2011.10.042 [13] Günes, S., & Sariciftci, N. S. (2008). Hybrid Solar Cells. Inorganica Chimica Acta, 361(3), 581–588. doi:10.1016/j.ica.2007.06.042 [14] Howe, R. F., & Grätzel, M. (1985). EPR Observation of Trapped Electrons in Colloidal Titanium Dioxide. The Journal of Physical Chemistry, 89(21), 4495–4499. doi: 10.1021/j100267a018 [15] O’Regan, B., & Grätzel , M. (1991). A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 353, 737–740. doi:10.1038/353737a0 [16] Vossen, J. L. (1976). Transparent Conducting Films. Journal of Vacuum Science and Technology, 13(1), 1–64. doi:10.1116/1.568875 [17] Shanthi, E., Banerjee, A., Dutta, V., & Chopra, K. L. (1982). Electrical and Optical Properties of Tin Oxide Films Doped with F and (Sb+F). Journal of Applied Physics, 53(3), 1615–1621. doi:10.1063/1.330619 [18] Kumar, D. K., Kříž, J., Bennett, N., Chen, B., Upadhayaya, H., Reddy, K. R., & Sadhu, V. (2020). Functionalized Metal Oxide Nanoparticles for Efficient Dye-Sensitized Solar Cells (DSSCs): A Review. Materials Science for Energy Technologies, 3, 472–481. doi:10.1016/j.mset.2020.03.003 [19] Ahmed, U., Alizadeh, M., Rahim, N. A., Shahabuddin, S., Ahmed, M. S., & Pandey, A. K. (2018). A Comprehensive Review on Counter Electrodes for Dye Sensitized Solar Cells: A Special Focus on Pt-TCO Free Counter Electrodes. Solar Energy, 174(1), 1097–1125. doi:10.1016/j.solener.2018.10.010 [20] Sengupta, D., Das, P., Mondal, B., & Mukherjee, K. (2016). Effects of Doping, Morphology and Film-Thickness of Photo-Anode Materials for Dye Sensitized Solar Cell Application – A Review. Renewable and Sustainable Energy Reviews, 60, 356–376. doi:10.1016/j.rser.2016.01.104 [21] Sharma, K., Sharma, V., & Sharma, s. s. (2018). Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters, 13(813). doi:10.1186/s11671-018-2760-6 [22] Ghernaout, D., Boudjemline, A., & Elboughdiri, N. (2020). Electrochemical Engineering in the Core of the Dye-Sensitized Solar Cells (DSSCs). Open Access Library Journal, 7(3), 1–12. doi:10.4236/oalib.1106178 [23] Shenck, N. S. (2010). Alternative energy systems. US Naval Academy Lecture Readings, 201. [24] Dinçer, F., & Meral, M. E. (2010). Critical Factors That Affecting Efficiency of Solar Cells. Smart Grid and Renewable Energy, 1(1), 47–50. doi: 10.4236/sgre.2010.11007 [25] Nell, M. E., & Barnett, A. M. (1987). The Spectral P-n Junction Model for Tandem Solar-Cell Design. IEEE Transactions on Electron Devices, 34(2), 257–266. doi:10.1109/T-ED.1987.22916 [26] Green, M. A. (1982). Solar Cells: Operating Principles, Technology, and System Applications. Australia: University of New South Wales. Retrieved from https://ui.adsabs.harvard.edu/abs/1982ph...book.....G [27] Singh, P., & Ravindra, N. M. (2012). Temperature Dependence of Solar Cell Performance—an Analysis. Solar Energy Materials and Solar Cells, 101, 36–45. doi:10.1016/j.solmat.2012.02.019 [28] Goossens, D., & Kerschaever, E. V. (1999). Aeolian Dust Deposition on Photovoltaic Solar Cells: The Effects of Wind Velocity and Airborne Dust Concentration on Cell Performance. Solar Energy, 66(4), 277–289. doi:10.1016/S0038-092X(99)00028-6 [29] Jiang, H., Lu, L., & Sun, K. (2011). Experimental Investigation of the Impact of Airborne Dust Deposition on the Performance of Solar Photovoltaic (PV) Modules. Atmospheric Environment, 45(25), 4299–4304. doi:10.1016/j.atmosenv.2011.04.084 [30] Kumar, R., & Rosen, M. A. (2011). A Critical Review of Photovoltaic–Thermal Solar Collectors for Air Heating. Applied Energy, 88(11), 3603–614. doi:10.1016/j.apenergy.2011.04.044 [31] Koutroulis, E., Kalaitzakis, K., & Tzitzilonis, V. (2009). Development of an FPGA-Based System for Real-Time Simulation of Photovoltaic Modules. Microelectronics Journal, 40(7), 1094–1102. doi:10.1016/j.mejo.2008.05.014 [32] Papageorgiou, N., Maier, W. F., & Grätzel, M. (1997). An Iodine/Triiodide Reduction Electrocatalyst for Aqueous AndOrganic Media. Journal of The Electrochemical Society, 144(3), 876–884. doi: 10.1149/1.1837502 [33] Fang, X., Ma, T., Guan, G., Akiyama, M., Kida, T., & Abe, E. (2003). Effect of the Thickness of the Pt Film Coated on a Counter Electrode on the Performance of a Dye-Sensitized Solar Cell. Journal of Electroanalytical Chemistry, 570(2), 257–263. doi: 10.1016/j.jelechem.2004.04.004 [34] Ponken, T., Tagsin, K., Suwannakhun, C., Luecha, J., & Choawunklang, W. (2017). Preparation of Platinum (Pt) Counter Electrode Coated by Electrochemical Technique at High Temperature for Dye-Sensitized Solar Cell (DSSC) Application. Journal of Physics: Conference Series, 901. doi: 10.1088/1742-6596/901/1/012084 [35] Ye, M., Wen, X., Wang, M., Iocozzia, J., Zhang, N., Lin, C., & Lin, Z. (2015). Recent Advances in Dye-Sensitized Solar Cells: From Photoanodes, Sensitizers and Electrolytes to Counter Electrodes. Materials Today, 18(3), 155–162. doi:10.1016/j.mattod.2014.09.001 [36] Kay, A., & Grätzel, M. (1996). Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder. Solar Energy Materials and Solar Cells, 44(1), 99–117. doi:10.1016/0927-0248(96)00063-3 [37] Imoto, K., Takahashi, K., Yamaguchi, T., Komura, T., Nakamura, J., & Murata, K. (2003). High-Performance Carbon Counter Electrode for Dye-Sensitized Solar Cells. Solar Energy Materials and Solar Cells, 79(4), 459–469. doi:10.1016/S0927-0248(03)00021-7 [38] Wang, X., Zhi, L., & Müllen, K. (2008). Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters, 8(1), 323–327. doi:10.1021/nl072838r [39] Yang, N., Zhai, J., Wang, D., Chen, Y., & Jiang, L. (2010). Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells. ACS Nano, 4(2), 887–894. doi:10.1021/nn901660v [40] Brennan, L. J., Barwich, S. T., Satti, A., Faure, A., & Gun’ko, Y. K. (2013). Graphene–Ionic Liquid Electrolytes for Dye Sensitised Solar Cells. Journal of Materials Chemistry A, 1(29), 8379–8384. doi:10.1039/C3TA11609C [41] Roy-mayhew, J. D., & Aksay, I. A. (2014). Graphene Materials and Their Use in Dye-Sensitized Solar Cells. Chemical Reviews, 114(12), 6323–6348. doi:10.1021/cr400412a [42] Ojeda, M., kumar, D. K., Chen, B., Xuan, J., Maroto-valer, M. M., leung, D. y. c., & Wang, H. (2017). Polymeric Templating Synthesis of Anatase TiO2 Nanoparticles from Low-Cost Inorganic Titanium Sources. ChemistrySelect, 2(2), 702–706. doi:10.1002/slct.201601795 [43] Yang, W., Wan, F., Wang, Y., & Jiang, C. (2009). Achievement of 6.03% Conversion Efficiency of Dye-Sensitized Solar Cells with Single-Crystalline Rutile TiO2 Nanorod Photoanode. Applied Physics Letters, 95(13), 133121. doi:10.1063/1.3240870 [44] Lin, H., Li, L., Zhao, M., Huang, X., Chen, X., Li, G., & Yu, R. (2012). Synthesis of High-Quality Brookite TiO2 Single-Crystalline Nanosheets with Specific Facets Exposed: Tuning Catalysts from Inert to Highly Reactive. Journal of the American Chemical Society, 134(20), 8328–8331. doi:10.1021/ja3014049 [45] Geim, A. K., & Novoselov, K. S. (2007). The Rise of Graphene. Nature Materials, 6, 183–191. doi:10.1038/nmat1849 [46] Hernandez, Y., Nicolosi, valeria, Lotya, M., Blighe, F. M., Sun, Z., De, S., … Coleman, J. N. (2008). High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nature Nanotechnology, 3, 563–568. doi:10.1038/nnano.2008.215 [47] Yu, Q., Jauregui, luis A , Wu, W., Colby, R., Tian, J., Su, Z., … Chen, Y. P. (2011). Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapour Deposition. Nat Mater, 10(6), 443–449. doi:10.1038/nmat3010 [48] Reina, A., Jia, X., Ho, J., Nezich, D., Son, hyungbin, Bulovic, V., … Kong, J. (2009). Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9(1), 30–35. doi:10.1021/nl801827v [49] Bolotin, K. i., Sikes, K. j., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., … Stormer, H. l. (2008). Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communications, 146(9–10), 351–355. doi:10.1016/j.ssc.2008.02.024 [50] Chen , J., Jang, C., Xiao, S., ishigami, M., & Fuhrer, M. S. (2008). Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2. Nat Nanotechnol, 3(4), 206–209. doi:10.1038/nnano.2008.58 [51] Mak, K. F., Sfeir, M. y., Wu, Y., Lui , C. hung, Misewich, J. a., & Heinz, T. f. (2008). Measurement of the Optical Conductivity of Graphene. Physical Review Letters, 101(19), 196405. doi:10.1103/PhysRevLett.101.196405 [52] Park, S., & Ruoff, R. s. (2009). Chemical Methods for the Production of Graphenes. Nature Nanotechnology, 4, 217–224. doi:10.1038/nnano.2009.58 [53] Brodie, B. c. (1859). On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society, 149, 249–259. doi:10.12691/wjce-6-1-8 [54] Schniepp, H. c, Li, J., Mcallister, M. j, Sai, H., Herrera-alonso, M., Adamson, D. h, … Aksay, I. a. (2006). Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The Journal of Physical Chemistry B, 110(17), 8535–8539. doi:10.1021/jp060936f [55] Hwa, T., Kokufuta, E., & Tanaka, T. (1991). Conformation of Graphite Oxide Membranes in Solution. Physical Review A, 44(4). doi:10.1103/physreva.44.r2235 [56] Gao, W., Alemany, lawrence b. , Ci, L., & Ajayan, P. m. (2009). New Insights into the Structure and Reduction of Graphite Oxide. Nature Chemistry, 1, 403–408. [57] Ramesha, G. k., & Sampath, S. (2009). Electrochemical Reduction of Oriented Graphene Oxide Films: An in Situ Raman Spectroelectrochemical Study. The Journal of Physical Chemistry C, 113(19), 7985–7989. doi:10.1021/jp811377n [58] Lin, Y., Dimitrakopoulos, C., Jenkins, k a , Farmer, D. b, Chiu, H., Grill, a , & Avouris, P. (2010). 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science, 327(5699), 662. doi:10.1126/science.1184289 [59] Nethravathi, C., & Rajamathi, M. (2008). Chemically Modified Graphene Sheets Produced by the Solvothermal Reduction of Colloidal Dispersions of Graphite Oxide. Carbon, 46(14), 1994–1998. doi:10.1016/j.carbon.2008.08.013 [60] Punckt, C., Muckel, F., Wolff, S., Aksay, I. a., Chavarin, C. a., Bacher, G., & mertin, W. (2012). The Effect of Degree of Reduction on the Electrical Properties of Functionalized Graphene Sheets. Applied Physics Letters, 102(2), 023114. doi:10.1063/1.4775582 [61] Krishnan, D., Powar, N. S., Vasanth, A., Ramanathan, K. V., Nair, S. V., & Shanmugam, M. (2021). Graphene Oxide Enabled Hole Transport Characteristics in Iodide/Tri-Iodide for Improved Dye Sensitized Solar Cell Performance. Materials Letters, 285, 129176. doi:10.1016/j.matlet.2020.129176 [62] Manikandan, V. s, Palai, A. k., Mohanty, S., & Nayak, S. k. (2019). Hydrothermally Synthesized Self-Assembled Multi-Dimensional TiO2/Graphene Oxide Composites with Efficient Charge Transfer Kinetics Fabricated as Novel Photoanode for Dye Sensitized Solar Cell. Journal of Alloys and Compounds, 793, 400–409. doi:10.1016/j.jallcom.2019.04.050 [63] Tjoa, V., Chua, J., Pramana, S. s., Wei, J., Mhaisalkar, S. g., & Mathews, N. (2012). Facile Photochemical Synthesis of Graphene-Pt Nanoparticle Composite for Counter Electrode in Dye Sensitized Solar Cell. ACS Applied Materials & Interfaces, 4(7), 3447–3452. doi:10.1021/am300437g [64] Qiu, L., Zhang, H., Wang, W., Chen, Y., & Wang, R. (2014). Effects of Hydrazine Hydrate Treatment on the Performance of Reduced Graphene Oxide Film as Counter Electrode in Dye-Sensitized Solar Cells. Applied Surface Science, 319, 339–343. doi:10.1016/j.apsusc.2014.07.133 [65] Ho, C., & Wang, H. (2015). Characteristics of Thermally Reduced Graphene Oxide and Applied for Dye-Sensitized Solar Cell Counter Electrode. Applied Surface Science, 357, 147–154. doi:10.1016/j.apsusc.2015.09.016 [66] Cohen, E. and Lightfoot, E.J. (2011). Coating Processes. In Kirk-Othmer Encyclopedia of Chemical Technology, (Ed.). doi:10.1002/0471238961.1921182203150805.a01.pub3 [67] Erickson, K., Erni, R., Lee, Z., Alem, N., Gannett, W., & Zettl, A. (2010). Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide. Advanced Materials, 22(40), 4467–4472. doi:10.1002/adma.201000732
|