|
1.Thompson, R. C., Swan, S. H., Moore, C. J., & Vom Saal, F. S. (2009). Our plastic age. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1973-1976. 2.Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782. 3.Ritchie, H., & Roser, M. (2018). Plastic pollution. Our World in Data. 4.Palmeiro-Sánchez, T., O’Flaherty, V., & Lens, P. N. (2022). Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. Journal of Biotechnology, 348, 10-25. 5.Madison, L. L., & Huisman, G. W. (1999). Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiology and molecular biology reviews, 63(1), 21-53. 6.Lee, S. Y. (1996). Bacterial polyhydroxyalkanoates. Biotechnology and bioengineering, 49(1), 1-14. 7.Byrom, D. (1987). Polymer synthesis by microorganisms: technology and economics. Trends in biotechnology, 5(9), 246-250. 8.Tan, G. Y. A., Chen, C. L., Li, L., Ge, L., Wang, L., Razaad, I. M. N., ... & Wang, J. Y. (2014). Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers, 6(3), 706-754. 9.Ross, G., Ross, S., & Tighe, B. J. (2017). Bioplastics: new routes, new products. Brydson's Plastics Materials, 631-652. 10.Eraslan, K., Aversa, C., Nofar, M., Barletta, M., Gisario, A., Salehiyan, R., & Goksu, Y. A. (2022). Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)(PHBH): synthesis, properties, and applications-A Review. European Polymer Journal, 111044. 11.Reddy, C. S. K., Ghai, R., & Kalia, V. (2003). Polyhydroxyalkanoates: an overview. Bioresource technology, 87(2), 137-146. 12.Lageveen, R. G., Huisman, G. W., Preusting, H., Ketelaar, P., Eggink, G., & Witholt, B. (1988). Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Applied and environmental microbiology, 54(12), 2924-2932. 13.Lu, J., Tappel, R. C., & Nomura, C. T. (2009). Mini-review: biosynthesis of poly (hydroxyalkanoates). Journal of Macromolecular Science®, Part C: Polymer Reviews, 49(3), 226-248. 14.Sheu, D. S., Chen, Y. L. L., Jhuang, W. J., Chen, H. Y., & Jane, W. N. (2018). Cultivation temperature modulated the monomer composition and polymer properties of polyhydroxyalkanoate synthesized by Cupriavidus sp. L7L from levulinate as sole carbon source. International journal of biological macromolecules, 118, 1558-1564. 15.陳紀融 (2018)。野生株Cupriavidus sp. L7L以分子育種提升其PHA產量之研究。國立高雄科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。 16.Kniewel R., Revelles Lopez O., Prieto M. (2017) Biogenesis of Medium-Chain-Length Polyhydroxyalkanoates. In: Geiger O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham. 17.Zhang, J., Shishatskaya, E. I., Volova, T. G., da Silva, L. F., & Chen, G. Q. (2018). Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering: C, 86, 144-150. 18.Amelia, T. S. M., Govindasamy, S., Tamothran, A. M., Vigneswari, S., & Bhubalan, K. (2019). Applications of PHA in agriculture. In Biotechnological applications of polyhydroxyalkanoates (pp. 347-361). Springer, Singapore. 19.Mudenur, C., Mondal, K., Singh, U., & Katiyar, V. (2019). Production of polyhydroxyalkanoates and its potential applications. In Advances in sustainable polymers (pp. 131-164). Springer, Singapore. 20.Doi, Y., Kanesawa, Y., Kunioka, M., & Saito, T. (1990). Biodegradation of microbial copolyesters: poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules, 23(1), 26-31. 21.Obruca, S., Sedlacek, P., Slaninova, E., Fritz, I., Daffert, C., Meixner, K., ... & Koller, M. (2020). Novel unexpected functions of PHA granules. Applied microbiology and biotechnology, 104(11), 4795-4810. 22.Horowitz, D. M., & Sanders, J. K. (1994). Amorphous, biomimetic granules of polyhydroxybutyrate: preparation, characterization, and biological implications. Journal of the American Chemical Society, 116(7), 2695-2702. 23.Roohi, Zaheer, M. R., & Kuddus, M. (2018). PHB (poly‐β‐hydroxybutyrate) and its enzymatic degradation. Polymers for Advanced Technologies, 29(1), 30-40. 24.Jendrossek, D., & Handrick, R. (2002). Microbial degradation of polyhydroxyalkanoates. Annual Review of Microbiology, 56(1), 403-432. 25.Numata, K., Abe, H., & Doi, Y. (2008). Enzymatic processes for biodegradation of poly (hydroxyalkanoate) s crystals. Canadian Journal of Chemistry, 86(6), 471-483. 26.Sehgal, R., & Gupta, R. (2020). Polyhydroxyalkanoate and its efficient production: an eco-friendly approach towards development. 3 Biotech, 10(12), 1-14. 27.Kadouri, D., Jurkevitch, E., & Okon, Y. (2003). Poly β-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant. Archives of microbiology, 180(5), 309-318. 28.Adaya, L., Millán, M., Peña, C., Jendrossek, D., Espín, G., Tinoco-Valencia, R., ... & Segura, D. (2018). Inactivation of an intracellular poly-3-hydroxybutyrate depolymerase of Azotobacter vinelandii allows to obtain a polymer of uniform high molecular mass. Applied microbiology and biotechnology, 102(6), 2693-2707. 29.Arikawa, H., Sato, S., Fujiki, T., & Matsumoto, K. (2016). A study on the relation between poly (3-hydroxybutyrate) depolymerases or oligomer hydrolases and molecular weight of polyhydroxyalkanoates accumulating in Cupriavidus necator H16. Journal of biotechnology, 227, 94-102. 30.Kamm, B., Kamm, M., Schmidt, M., Hirth, T., & Schulze, M. (2005). Lignocellulose‐based chemical products and product family trees. Biorefineries‐Industrial Processes and Products: Status Quo and Future Directions, 97-149. 31.Morone, A., Apte, M., & Pandey, R. A. (2015). Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renewable and Sustainable Energy Reviews, 51, 548-565. 32.Bozell, J. J., Moens, L., Elliott, D. C., Wang, Y., Neuenscwander, G. G., Fitzpatrick, S. W., ... & Jarnefeld, J. L. (2000). Production of levulinic acid and use as a platform chemical for derived products. Resources, conservation and recycling, 28(3-4), 227-239. 33.Maity, S. K. (2015). Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renewable and Sustainable Energy Reviews, 43, 1427-1445. 34.Heleniak, T. (2021). The future of the Arctic populations. Polar Geography, 44(2), 136-152. 35.Kumar, A., Shende, D. Z., & Wasewar, K. L. (2020). Production of levulinic acid: A promising building block material for pharmaceutical and food industry. Materials Today: Proceedings, 29, 790-793. 36.Mukherjee, A., Dumont, M. J., & Raghavan, V. (2015). Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass and Bioenergy, 72, 143-183. 37.Ashby, R. D., Solaiman, D. K., Nuñez, A., Strahan, G. D., & Johnston, D. B. (2018). Burkholderia sacchari DSM 17165: A source of compositionally-tunable block-copolymeric short-chain poly (hydroxyalkanoates) from xylose and levulinic acid. Bioresource technology, 253, 333-342. 38.Martin, C. H., & Prather, K. L. J. (2009). High-titer production of monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida. Journal of Biotechnology, 139(1), 61-67. 39.Kachrimanidou, V., Kopsahelis, N., Papanikolaou, S., Kookos, I. K., De Bruyn, M., Clark, J. H., & Koutinas, A. A. (2014). Sunflower-based biorefinery: poly (3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresource technology, 172, 121-130. 40.Li, M., & Wilkins, M. R. (2020). Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. International journal of biological macromolecules, 156, 691-703. 41.Wang, Y., Yin, J., & Chen, G. Q. (2014). Polyhydroxyalkanoates, challenges and opportunities. Current opinion in biotechnology, 30, 59-65. 42.Aoyagi, Y., Doi, Y., & Iwata, T. (2003). Mechanical properties and highly ordered structure of ultra-high-molecular-weight poly [(R)-3-hydroxybutyrate] films: effects of annealing and two-step drawing. Polymer Degradation and Stability, 79(2), 209-216. 43.Zhang, L., Xiong, C., & Deng, X. (1996). Miscibility, crystallization and morphology of poly (β-hydroxybutyrate)/poly (d, l-lactide) blends. Polymer, 37(2), 235-241. 44.Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., & Pühler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 145(1), 69-73. 45.Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop II, R. M., & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166(1), 175-176. 46.Kamiya, N., Yamamoto, Y., Inoue, Y., Chujo, R., & Doi, Y. (1989). Microstructure of bacterially synthesized poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules, 22(4), 1676-1682. 47.Bartels, M., Gutschmann, B., Widmer, T., Grimm, T., Neubauer, P., & Riedel, S. L. (2020). Recovery of the PHA copolymer P (HB-co-HHx) with non-halogenated solvents: influences on molecular weight and HHx-content. Frontiers in bioengineering and biotechnology, 8, 944. 48.Han, J., Wu, L. P., Hou, J., Zhao, D., & Xiang, H. (2015). Biosynthesis, characterization, and hemostasis potential of tailor-made poly (3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterranei. Biomacromolecules, 16(2), 578-588. 49.York, G. M., Lupberger, J., Tian, J., Lawrence, A. G., Stubbe, J., & Sinskey, A. J. (2003). Ralstonia eutropha H16 encodes two and possibly three intracellular poly [d-(−)-3-hydroxybutyrate] depolymerase genes. Journal of Bacteriology, 185(13), 3788-3794.
50.Sznajder, A., & Jendrossek, D. (2014). To be or not to be a poly (3-hydroxybutyrate)(PHB) depolymerase: PhaZd1 (PhaZ6) and PhaZd2 (PhaZ7) of Ralstonia eutropha, highly active PHB depolymerases with no detectable role in mobilization of accumulated PHB. Applied and Environmental Microbiology, 80(16), 4936-4946. 51.Brigham, C. J., Reimer, E. N., Rha, C., & Sinskey, A. J. (2012). Examination of PHB depolymerases in Ralstonia eutropha: further elucidation of the roles of enzymes in PHB homeostasis. AMB express, 2(1), 1-13. 52.Arias, S., Bassas‐Galia, M., Molinari, G., & Timmis, K. N. (2013). Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida. Microbial biotechnology, 6(5), 551-563. 53.Cai, L., Yuan, M. Q., Liu, F., Jian, J., & Chen, G. Q. (2009). Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442. Bioresource technology, 100(7), 2265-2270. 54.Solaiman, D. K. Y., Ashby, R. D., & Foglia, T. A. (2003). Effect of inactivation of poly(hydroxyalkanoates) depolymerase gene on the properties of poly (hydroxyalkanoates) in Pseudomonas resinovorans. Applied microbiology and biotechnology, 62(5), 536-543. 55.Vo, M. T., Ko, K., & Ramsay, B. (2015). Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates by a phaZ-knockout strain of Pseudomonas putida KT2440. Journal of Industrial Microbiology and Biotechnology, 42(4), 637-646. 56.Choi, M. H., Xu, J., Rho, J. K., Zhao, X. P., & Yoon, S. C. (2010). Enhanced production of longer side-chain polyhydroxyalkanoic acid with ω-aromatic group substitution in phaZ-disrupted Pseudomonas fluorescens BM07 mutant through unrelated carbon source cometabolism and salicylic acid β-oxidation inhibition. Bioresource technology, 101(12), 4540-4548. 57.Fukui, T., Ito, M., & Tomita, K. (1982). Purification and characterization of acetoacetyl‐CoA synthetase from Zoogloea ramigera I‐16‐M. European journal of biochemistry, 127(2), 423-428. 58.Shiraki, M., Endo, T., & Saito, T. (2006). Fermentative production of (R)-(−)-3-hydroxybutyrate using 3-hydroxybutyrate dehydrogenase null mutant of Ralstonia eutropha and recombinant Escherichia coli. Journal of bioscience and bioengineering, 102(6), 529-534. 59.Sehgal, R., & Gupta, R. (2020). Polyhydroxyalkanoate and its efficient production: an eco-friendly approach towards development. 3 Biotech, 10(12), 1-14. 60.Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process biochemistry, 40(2), 607-619. 61.Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., & Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. International journal of biological macromolecules, 89, 161-174. 62.Solaiman, D. K. Y., Ashby, R. D., & Foglia, T. A. (2003). Effect of inactivation of poly (hydroxyalkanoates) depolymerase gene on the properties of poly (hydroxyalkanoates) in Pseudomonas resinovorans. Applied microbiology and biotechnology, 62(5), 536-543.
|