|
[1]Cantero, J.L., Díaz-Álvarez, J., Miguélez, M.H., Marín, N.C. (2013). Analysis of tool wear patterns in finishing turning of Inconel 718. Wear, 297(1-2), 885-894. https://doi.org/10.1016/j.wear.2012.11.004 [2]Debnath, S., Reddy, M.M., Yi, Q.S. (2016). Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method. Measurement, 78, 111-119. https://doi.org/10.1016/j.measurement.2015.09.011 [3]Brinksmeier, E., Preuss, W., Riemer, O., Rentsch, R. (2017). Cutting forces, tool wear and surface finish in high speed diamond machining. Precision Engineering, 49, 293-304. https://doi.org/10.1016/j.precisioneng.2017.02.018 [4]Masmiati, N., Sarhan, A.A.D., Hassan, M.A.N., Hamdi, M. (2016). Optimization of cutting conditions for minimum residual stress, cutting force and surface roughness in end milling of S50C medium carbon steel. Measurement, 86, 253-265. https://doi.org/10.1016/j.measurement.2016.02.049 [5]Aslan, A. (2020). Optimization and analysis of process parameters for flank wear, cutting forces and vibration in turning of AISI 5140: A comprehensive study. Measurement, 163, 107959. https://doi.org/10.1016/j.measurement.2020.107959 [6]D’Addona, D.M., Ullah, A.M.M.S., Matarazzo, D. (2017). Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing. Journal of Intelligent Manufacturing, 28(6), 1285-1301. https://doi.org/10.1007/s10845-015-1155-0 [7]Mikołajczyk, T., Nowicki, K., Bustillo, A., Pimenov, Y.D. (2018). Predicting tool life in turning operations using neural networks and image processing. Mechanical Systems and Signal Processing, 104, 503-513. https://doi.org/10.1016/j.ymssp.2017.11.022 [8]Li, Z., Liu, R., Wu, D. (2019). Data-driven smart manufacturing: Tool wear monitoring with audio signals and machine learning. Journal of Manufacturing Processes, 48, 66-76. https://doi.org/10.1016/j.jmapro.2019.10.020 [9]Bhuiyan, M.S.H., Choudhury, I.A., Dahari, M. (2014). Monitoring the tool wear, surface roughness and chip formation occurrences using multiple sensors in turning. Journal of Manufacturing Systems, 33(4), 476-487. https://doi.org/10.1016/j.jmsy.2014.04.005 [10]Elangovan, M., Sakthivel, N.R., Saravanamurugan, S., Nair, B.B., Sugumaran, V. (2015). Machine learning approach to the prediction of surface roughness using statistical features of vibration signal acquired in turning. Procedia Computer Science, 50, 282-288. https://doi.org/10.1016/j.procs.2015.04.047 [11]Arslan, H., Osman Er, A., Orhan, S., Aslan, E. (2016). Tool condition monitoring in turning using statistical parameters of vibration signal. The International Journal of Acoustics and Vibration, 21(4) 371-378. https://doi.org/10.20855/ijav.2016.21.4432 [12]González-Laguna, A., Barreiro, J., Fernández-Abia, A., Alegre, E., González-Castro, V. (2015). Design of a TCM system based on vibration signal for metal turning processes. Procedia Engineering, 132, 405-412. https://doi.org/10.1016/j.proeng.2015.12.512 [13]Liu, M.-K., Tseng, Y.-H., Tran, M.-Q. (2019). Tool wear monitoring and prediction based on sound signal. The International Journal of Advanced Manufacturing Technology, 103(9-12), 3361-3373. https://doi.org/10.1007/s00170-019-03686-2 [14]Panda, A., Sahoo, A.K., Panigrahi, I., Rout, A.K. (2020). Prediction models for on-line cutting tool and machined surface condition monitoring during hard turning considering vibration signal. Mechanics & Industry, 21(5), 520. https://doi.org/10.1051/meca/2020067 [15]Seemuang, N., McLeay, T., Slatter, T. (2016). Using spindle noise to monitor tool wear in a turning process. The International Journal of Advanced Manufacturing Technology, 86(9-12), 2781-2790. https://doi.org/10.1007/s00170-015-8303-8 [16]Stavropoulos, P., Papacharalampopoulos, A., Souflas, T. (2020). Indirect online tool wear monitoring and model-based identification of process-related signal. Advances in Mechanical Engineering, 12(5), 1-12. https://doi.org/10.1177/1687814020919209 [17]Sredanovic, B., Cica, D. (2015). Comparative study of ANN and ANFIS prediction models for turning process in different cooling and lubricating conditions. SAE International Journal of Materials and Manufacturing, 8(2), 586-591. https://www.jstor.org/stable/10.2307/26268749 [18]Sen, B., Mandal, U.K., Mondal, S.P. (2017). Advancement of an intelligent system based on ANFIS for predicting machining performance parameters of Inconel 690 – A perspective of metaheuristic approach. Measurement, 109, 9-17. https://doi.org/10.1016/j.measurement.2017.05.050 [19]Masoudi, S., Sima, M., Tolouei-Rad, M. (2018). Comparative study of ANN and ANFIS models for predicting temperature in machining. Journal of Engineering Science and Technology, 13(1), 211-225. https://www.researchgate.net/publication/322331410 [20]Naresh, C., Bose, P.S.C., Rao, C. S. P. (2020). Artificial neural networks and adaptive neuro-fuzzy models for predicting WEDM machining responses of Nitinol alloy: comparative study. SN Applied Sciences, 2(2) 314. https://doi.org/10.1007/s42452-020-2083-y [21]Naresh, C., Bose, P.S.C., Suryaprakash Rao, C.S., Selvaraj, N. (2021). Prediction of cutting force of AISI 304 stainless steel during laser-assisted turning process using ANFIS. Materials Today: Proceedings, 38, 2366-2371. https://doi.org/10.1016/j.matpr.2020.07.074 [22]Bayram, D., Şeker, S. (2015). Anfis model for vibration signals based on aging process in electric motors. Soft Computing, 19(4), 1107-1114. https://doi.org/10.1007/s00500-014-1326-5 [23]Jain, V., Raj, T. (2017). Tool life management of unmanned production system based on surface roughness by ANFIS. International Journal of System Assurance Engineering and Management, 8(2), 458-467. https://doi.org/10.1007/s13198-016-0450-2 [24]Guvenc, M.A., Bilgic, H.H., Cakir, M., Mistikoglu, S. (2022). The prediction of surface roughness and tool vibration by using metaheuristic-based ANFIS during dry turning of Al alloy (AA6013). Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(10) 474. https://doi.org/10.1007/s40430-022-03798-z [25]Jang, J.-S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), 665-685. [26]臥式車削中心TS-100系列,取自:程泰機械股份有限公司網頁: https://www.goodwaycnc.com/,線上檢索日期:2023 年 5 月 27 日 [27]外徑車削刀具,取自:Sandvik Coromant 公司網頁: https://www.sandvik.coromant.com/,線上檢索日期:2023 年 5 月 27 日 [28]高頻工業ICP加速度計,取自:PCB Piezotronics 公司網頁: https://www.pcb.com/,線上檢索日期:2023 年 5 月 27 日 [29]USB-443X規格表,取自:National Instruments 公司網頁: https://ni.com/,線上檢索日期:2023 年 5 月 27 日 [30]keyence vk-x110 規格表,取自:KEYENCE 公司網頁: https://www.keyence.com.tw/,線上檢索日期:2023 年 5 月 27 日
|