|
[1] 鄭詠文、林峯州、鄭宇辰、蕭盛澤、王耿斌(2019)“太陽能光電產業專利趨勢分析”108.智慧財產月刊VOL.247 [2] Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical reviews, 93(1), 341-357. doi:10.1021/cr00017a016 [3] Murdock, H. E., Gibb, D., Andre, T., Sawin, J. L., Brown, A., Ranalder, L., . . . Brumer, L. (2021). Renewables 2021 - Global status report (978-3-948393-03-8). Retrieved from France: http://inis.iaea.org/search/search.aspx?orig_q=RN:52059346 [4]NREL. (2022, July 6). Best Research-Cell Efficiency Chart. Retrieved from https://www.nrel.gov/pv/cell-efficiency.html [5]MARTIN A.GREEN(2009)。太陽能電池工作原理、技術與系統應用,臺北市:五南。 [6]Hossain, M. A., Park, J., Yoo, D., Baek, Y.-k., Kim, Y., Kim, S. H., & Lee, D. (2016). Surface plasmonic effects on dye-sensitized solar cells by SiO2-encapsulated Ag nanoparticles. Current Applied Physics, 16(3), 397-403. doi:https://doi.org/10.1016/j.cap.2016.01.002 [7]Amiri, O., Salavati-Niasari, M., Rafiei, A., & Farangi, M. (2014). 147% improved efficiency of dye synthesized solar cells by using CdS QDs, Au nanorods and Au nanoparticles. RSC Advances, 4(107), 62356-62361. [8]Lim, S. P., Pandikumar, A., Huang, N. M., Lim, H. N., Gu, G., & Ma, T. L. (2014). Promotional effect of silver nanoparticles on the performance of N-doped TiO 2 photoanode-based dye-sensitized solar cells. RSC Advances, 4(89), 48236-48244. [9]黃惠良、曾百亨(2008)。太陽能電池,臺北市:五南。 [10]Pearson, G., Chapin, D., & Fuller, C. (1954). Bell labs demonstrates the first practical silicon solar cell. Am Phys Soc (APS News), 18(4). [11]Granath, K., Bodegård, M., & Stolt, L. (2000). The effect of NaF on Cu(In,Ga)Se2 thin film solar cells. Solar Energy Materials and Solar Cells, 60(3), 279-293. doi:https://doi.org/10.1016/S0927-0248(99)00089-6 [12]Zheng, Y., & Xue, J. (2010). Organic photovoltaic cells based on molecular donor-acceptor heterojunctions. Polymer Reviews, 50(4), 420-453. [13]Olson, J. M., Friedman, D. J., & Kurtz, S. (2003). High-Efficiency III-V Multijunction Solar Cells. In Handbook of Photovoltaic Science and Engineering (pp. 359-411). [14]Kumavat, P. P., Sonar, P., & Dalal, D. S. (2017). An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements. Renewable and Sustainable Energy Reviews, 78, 1262-1287. [15]Kabir, F., Sakib, S. N., & Matin, N. (2019). Stability study of natural green dye based DSSC. Optik, 181, 458-464. doi:https://doi.org/10.1016/j.ijleo.2018.12.077 [16] Miles, R., Hynes, K., & Forbes, I. (2005). Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues. Progress in crystal growth and characterization of materials, 51(1-3), 1-42. [17]陳祉雲、李玉郎(2019)。染料敏化太陽能電池,科學發展,564期,頁32-37 [18]Mozaffari, S., Nateghi, M. R., & Zarandi, M. B. (2017). An overview of the Challenges in the commercialization of dye sensitized solar cells. Renewable and Sustainable Energy Reviews, 71, 675-686. [19]Grätzel, M. (2003). Dye-sensitized solar cells. Journal of photochemistry and photobiology C: Photochemistry Reviews, 4(2), 145-153. [20]Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical reviews, 110(11), 6595-6663. [21]Daeneke, T., Kwon, T.-H., Holmes, A. B., Duffy, N. W., Bach, U., & Spiccia, L. (2011). High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nature chemistry, 3(3), 211-215. [22]Fakharuddin, A., Jose, R., Brown, T. M., Fabregat-Santiago, F., & Bisquert, J. (2014). A perspective on the production of dye-sensitized solar modules. Energy & Environmental Science, 7(12), 3952-3981. [23]Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F., Ashari-Astani, N., Grätzel, M. (2014). Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature chemistry, 6(3), 242-247. [24]楊宏仁(2009)。應用於矽薄膜太陽電池之透明導電層沉積技術比較與分析,工業材料雜誌,271期 [25]Guo, W., Xu, Z., Zhang, F., Xie, S., Xu, H., & Liu, X. Y. (2016). Recent development of transparent conducting oxide‐free flexible thin‐film solar cells. Advanced Functional Materials, 26(48), 8855-8884. [26]王慶鈞、王瑞豪、連水養、陳家富(2011)。透明導電薄膜之應用概論,機械工業雜誌,338期 [27]Pallikkara, A., & Ramakrishnan, K. (2021). Efficient charge collection of photoanodes and light absorption of photosensitizers: A review. International Journal of Energy Research, 45(2), 1425-1448. [28]Bera, S., Sengupta, D., Roy, S., & Mukherjee, K. (2021). Research into dye-sensitized solar cells: a review highlighting progress in India. Journal of Physics: Energy, 3(3), 032013. [29]Basheer, B., Mathew, D., George, B. K., & Nair, C. R. (2014). An overview on the spectrum of sensitizers: the heart of dye sensitized solar cells. Solar Energy, 108, 479-507. [30]Shalini, S., Balasundaraprabhu, R., Kumar, T. S., Prabavathy, N., Senthilarasu, S., & Prasanna, S. (2016). Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review. International Journal of Energy Research, 40(10), 1303-1320. doi:https://doi.org/10.1002/er.3538 [31]Kalaignan, G. P., & Kang, Y. S. (2006). A review on mass transport in dye-sensitized nanocrystalline solar cells. Journal of photochemistry and photobiology C: Photochemistry Reviews, 7(1), 17-22. [32]Mariotti, N., Bonomo, M., Fagiolari, L., Barbero, N., Gerbaldi, C., Bella, F., & Barolo, C. (2020). Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry, 22(21), 7168-7218. doi:10.1039/D0GC01148G [33]Iftikhar, H., Sonai, G. G., Hashmi, S. G., Nogueira, A. F., & Lund, P. D. (2019). Progress on electrolytes development in dye-sensitized solar cells. Materials, 12(12), 1998. [34]Samantaray, M. R., Mondal, A. K., Murugadoss, G., Pitchaimuthu, S., Das, S., Bahru, R., & Mohamed, M. A. (2020). Synergetic effects of hybrid carbon nanostructured counter electrodes for dye-sensitized solar cells: A review. Materials, 13(12), 2779. [35]Subalakshmi, K., Kumar, K. A., Paul, O. P., Saraswathy, S., Pandurangan, A., & Senthilselvan, J. (2019). Platinum-free metal sulfide counter electrodes for DSSC applications: Structural, electrochemical and power conversion efficiency analyses. Solar Energy, 193, 507-518. [36]Sharma, K., Sharma, V., & Sharma, S. (2018). Dye-sensitized solar cells: fundamentals and current status. Nanoscale research letters, 13(1), 1-46. [37]Bavarian, M., Nejati, S., Lau, K. K., Lee, D., & Soroush, M. (2014). Theoretical and experimental study of a dye-sensitized solar cell. Industrial & Engineering Chemistry Research, 53(13), 5234-5247. [38]Beula, R. J., Suganthi, D., & Abiram, A. (2020). TiO2 photo-electrode with gold capping for improved observation in dye-sensitized solar cell. Applied Physics A, 126(3), 1-8. [39]Boro, B., Gogoi, B., Rajbongshi, B. M., & Ramchiary, A. (2018). Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review. Renewable and Sustainable Energy Reviews, 81, 2264-2270. doi:https://doi.org/10.1016/j.rser.2017.06.035 [40]Di Paola, A., Bellardita, M., & Palmisano, L. (2013). Brookite, the least known TiO2 photocatalyst. Catalysts, 3(1), 36-73. [41]Fazli, F., Ahmad, M., Soon, C., Nafarizal, N., Suriani, A., Mohamed, A., . . . Murakami, K. (2017). Dye-sensitized solar Cell using pure anatase TiO2 annealed at different temperatures. Optik, 140, 1063-1068. [42]Rai, P. (2019). Plasmonic noble metal@ metal oxide core–shell nanoparticles for dye-sensitized solar cell applications. Sustainable energy & fuels, 3(1), 63-91. [43]Jung, H.-Y., Yeo, I.-S., Kim, T.-U., Ki, H.-C., & Gu, H.-B. (2018). Surface plasmon resonance effect of silver nanoparticles on a TiO2 electrode for dye-sensitized solar cells. Applied Surface Science, 432, 266-271. [44]Deepa, K., Lekha, P., & Sindhu, S. (2012). Efficiency enhancement in DSSC using metal nanoparticles: A size dependent study. Solar Energy, 86(1), 326-330. [45]Agrawal, A., Siddiqui, S. A., Soni, A., Khandelwal, K., & Sharma, G. D. (2021). Performance analysis of TiO2 based dye sensitized solar cell prepared by screen printing and doctor blade deposition techniques. Solar Energy, 226, 9-19. [46]Ramasamy, E., Lee, W. J., Lee, D. Y., & Song, J. S. (2007). Portable, parallel grid dye-sensitized solar cell module prepared by screen printing. Journal of Power Sources, 165(1), 446-449. [47]Philipps, S. P., Dimroth, F., & Bett, A. W. (2018). High-efficiency III–V multijunction solar cells. In McEvoy's handbook of photovoltaics (pp. 439-472): Elsevier. [48]Cowley, J.M., Ed. (1992) Electron Diffraction Techniques, 1 and 2, Oxford University Press, New York. Another collection of excellent individual review articles. [49]羅聖全(2013)。科學基礎研究之重要利器-掃描式電子顯微鏡(SEM),科學研習,NO. 52.5 [50]Thermo Fisher Scientific Phenom-World BV. (2020, January 28). How Does EDX Analysis with a Scanning Electron Microscope (SEM) Work?. AZoM. Retrieved on August 08, 2022 from https://www.azom.com/article.aspx?ArticleID=16256. [51]Ermrich, M., & Opper, D. (2013). XRD for the analyst. Getting acquainted with the principles. Second. Panalytical. [52]Picollo, M., Aceto, M., & Vitorino, T. (2019). UV-Vis spectroscopy. Physical sciences reviews, 4(4). [53]Sharma, S., Shokeen, P., Saini, B., Sharma, S., Kashyap, J., Guliani, R., . . . Kapoor, A. (2014). Exact analytical solutions of the parameters of different generation real solar cells using Lambert W-function: a review article. Invertis Journal of Renewable Energy, 4(4), 155-194. [54]Diard, J.-P., Glandut, N., Montella, C., & Sanchez, J.-Y. (2005). One layer, two layers, etc. An introduction to the EIS study of multilayer electrodes. Part 1: Theory. Journal of Electroanalytical Chemistry, 578(2), 247-257. doi:https://doi.org/10.1016/j.jelechem.2005.01.007 [55] Supriyanto, A., Saputri, D. G., Ahmad, M. K. B., Ramelan, A. H., & Ramadhani, F. (2021). Significant efficiency improvement of TiO2: LEG4-Ag layer dye sensitized solar cells by incorporating small concentration of Ag. Optik, 231, 166429. [56] Qin, L., Liu, D., Zhang, Y., Zhao, P., Zhou, L., Liu, Y., . . . Lu, G. (2018). Comparison of two ways using Ag nanoparticles to improve the performance of dye-sensitized solar cells. Electrochimica Acta, 263, 426-432. [57] Khojasteh, F., Mersagh, M. R., & Hashemipour, H. (2022). The influences of Ni, Ag-doped TiO2 and SnO2, Ag-doped SnO2/TiO2 nanocomposites on recombination reduction in dye synthesized solar cells. Journal of Alloys and Compounds, 890, 161709.
|