|
[1]Lattin, W.C. and V.P. Utgikar, Transition to hydrogen economy in the United States: A 2006 status report. International Journal of Hydrogen Energy, 2007. 32(15): p. 3230-3237. [2]van Troostwijk, A.P. and J. Deiman, Sur une manière de décomposer l'Eau en Air inflammable et en Air vital. Obs. Phys, 1789. 35: p. 369. [3]Ye, K., Wang, G., Cao, D., & Wang, G. (2018). Recent advances in the electro-oxidation of urea for direct urea fuel cell and urea electrolysis. Topics in Current Chemistry, 376(6), 1-38. [4]Le Leuch, L. and T. Bandosz, The role of water and surface acidity on the reactive adsorption of ammonia on modified activated carbons. Carbon, 2007. 45(3): p. 568-578. [5]Yim, S. D., Kim, S. J., Baik, J. H., Nam, I. S., Mok, Y. S., Lee, J. H., ... & Oh, S. H. (2004). Decomposition of urea into NH3 for the SCR process. Industrial & engineering chemistry research, 43(16), 4856-4863. [6]Conway, B. and B. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica acta, 2002. 47(22-23): p. 3571-3594. [7]Danilovic, N., Subbaraman, R., Strmcnik, D., Stamenkovic, V., & Markovic, N. (2013). Electrocatalysis of the HER in acid and alkaline media. Journal of the Serbian Chemical Society, 78(12). [8]Parsons, R. (1958). The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Transactions of the Faraday Society, 54, 1053-1063. [9]Trasatti, S. (1972). Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 39(1), 163-184. [10]Suen, N. T., Hung, S. F., Quan, Q., Zhang, N., Xu, Y. J., & Chen, H. M. (2017). Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 46(2), 337-365. [11]Wright, J. C., Michaels, A. S., & Appleby, A. J. (1986). Electrooxidation of urea at the ruthenium titanium oxide electrode. AIChE Journal, 32(9), 1450-1458. [12]Isaka, Y., Kato, S., Hong, D., Suenobu, T., Yamada, Y., & Fukuzumi, S. (2015). Bottom-up and top-down methods to improve catalytic reactivity for photocatalytic production of hydrogen peroxide using a Ru-complex and water oxidation catalysts. Journal of Materials Chemistry A, 3(23), 12404-12412. [13]Take, T., Tsurutani, K., & Umeda, M. (2007). Hydrogen production by methanol–water solution electrolysis. Journal of Power Sources, 164(1), 9-16. [14]Sasikumar, G., Muthumeenal, A., Pethaiah, S. S., Nachiappan, N., & Balaji, R. (2008). Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production. international journal of hydrogen energy, 33(21), 5905-5910. [15]Nanda, S., Rana, R., Zheng, Y., Kozinski, J. A., & Dalai, A. K. (2017). Insights on pathways for hydrogen generation from ethanol. Sustainable Energy & Fuels, 1(6), 1232-1245. [16]Vitse, F., Cooper, M., & Botte, G. G. (2005). On the use of ammonia electrolysis for hydrogen production. Journal of Power Sources, 142(1-2), 18-26. [17]Boggs, B. K., & Botte, G. G. (2009). On-board hydrogen storage and production: An application of ammonia electrolysis. Journal of Power Sources, 192(2), 573-581. [18]Boggs, B. K., King, R. L., & Botte, G. G. (2009). Urea electrolysis: direct hydrogen production from urine. Chemical Communications, (32), 4859-4861. [19]Yan, W., Wang, D., & Botte, G. G. (2012). Electrochemical decomposition of urea with Ni-based catalysts. Applied Catalysis B: Environmental, 127, 221-226. [20]Yan, W., Wang, D., & Botte, G. G. (2012). Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochimica Acta, 61, 25-30. [21]Wang, D., Yan, W., Vijapur, S. H., & Botte, G. G. (2012). Enhanced electrocatalytic oxidation of urea based on nickel hydroxide nanoribbons. Journal of power sources, 217, 498-502. [22]Vedharathinam, V., & Botte, G. G. (2013). Direct evidence of the mechanism for the electro-oxidation of urea on Ni (OH) 2 catalyst in alkaline medium. Electrochimica Acta, 108, 660-665. [23]Wu, M. S., Lin, G. W., & Yang, R. S. (2014). Hydrothermal growth of vertically-aligned ordered mesoporous nickel oxide nanosheets on three-dimensional nickel framework for electrocatalytic oxidation of urea in alkaline medium. Journal of power sources, 272, 711-718. [24]Ding, R., Qi, L., Jia, M., & Wang, H. (2014). Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale, 6(3), 1369-1376. [25]Liang, Y., Liu, Q., Asiri, A. M., & Sun, X. (2015). Enhanced electrooxidation of urea using NiMoO4· xH2O nanosheet arrays on Ni foam as anode. Electrochimica Acta, 153, 456-460. [26]Forslund, R. P., Mefford, J. T., Hardin, W. G., Alexander, C. T., Johnston, K. P., & Stevenson, K. J. (2016). Nanostructured LaNiO3 perovskite electrocatalyst for enhanced urea oxidation. Acs Catalysis, 6(8), 5044-5051. [27]Chen, S., Duan, J., Vasileff, A., & Qiao, S. Z. (2016). Size Fractionation of Two‐Dimensional Sub‐Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. Angewandte Chemie, 128(11), 3868-3872. [28]Wei, S., Wang, X., Wang, J., Sun, X., Cui, L., Yang, W., ... & Liu, J. (2017). CoS2 nanoneedle array on Ti mesh: a stable and efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production. Electrochimica Acta, 246, 776-782. [29]Liu, D., Liu, T., Zhang, L., Qu, F., Du, G., Asiri, A. M., & Sun, X. (2017). High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. Journal of Materials Chemistry A, 5(7), 3208-3213. [30]Yu, Z. Y., Lang, C. C., Gao, M. R., Chen, Y., Fu, Q. Q., Duan, Y., & Yu, S. H. (2018). Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy & Environmental Science, 11(7), 1890-1897. [31]Song, M., Zhang, Z., Li, Q., Jin, W., Wu, Z., Fu, G., & Liu, X. (2019). Ni-foam supported Co (OH) F and Co–P nanoarrays for energy-efficient hydrogen production via urea electrolysis. Journal of Materials Chemistry A, 7(8), 3697-3703. [32]Sha, L., Yin, J., Ye, K., Wang, G., Zhu, K., Cheng, K., ... & Cao, D. (2019). The construction of self-supported thorny leaf-like nickel-cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis. Journal of Materials Chemistry A, 7(15), 9078-9085. [33]Xu, X., Du, P., Guo, T., Zhao, B., Wang, H., & Huang, M. (2020). In situ Grown Ni phosphate@ Ni12P5 Nanorod Arrays as a Unique Core–Shell Architecture: Competitive Bifunctional Electrocatalysts for Urea Electrolysis at Large Current Densities. ACS Sustainable Chemistry & Engineering, 8(19), 7463-7471. [34]Wang, L., Ren, L., Wang, X., Feng, X., Zhou, J., & Wang, B. (2018). Multivariate MOF-templated pomegranate-like Ni/C as efficient bifunctional electrocatalyst for hydrogen evolution and urea oxidation. ACS applied materials & interfaces, 10(5), 4750-4756. [35]King, R. L., & Botte, G. G. (2011). Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis. Journal of Power Sources, 196(22), 9579-9584. [36]Wu, F., Ou, G., Yang, J., Li, H., Gao, Y., Chen, F., ... & Shi, Y. (2019). Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting. Chemical Communications, 55(46), 6555-6558. [37]Liu, Q., Xie, L., Qu, F., Liu, Z., Du, G., Asiri, A. M., & Sun, X. (2017). A porous Ni 3 N nanosheet array as a high-performance non-noble-metal catalyst for urea-assisted electrochemical hydrogen production. Inorganic Chemistry Frontiers, 4(7), 1120-1124. [38]Li, F., Chen, J., Zhang, D., Fu, W. F., Chen, Y., Wen, Z., & Lv, X. J. (2018). Heteroporous MoS 2/Ni 3 S 2 towards superior electrocatalytic overall urea splitting. Chemical Communications, 54(41), 5181-5184. [39]Li, C., Liu, Y., Zhuo, Z., Ju, H., Li, D., Guo, Y., ... & Zhai, T. (2018). Local charge distribution engineered by schottky heterojunctions toward urea electrolysis. Advanced Energy Materials, 8(27), 1801775. [40]Barakat, N. A., Alajami, M., Al Haj, Y., Obaid, M., & Al-Meer, S. (2017). Enhanced onset potential NiMn-decorated activated carbon as effective and applicable anode in urea fuel cells. Catalysis Communications, 97, 32-36. [41]Liu, T., Liu, D., Qu, F., Wang, D., Zhang, L., Ge, R., ... & Sun, X. (2017). Enhanced electrocatalysis for energy‐efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Advanced Energy Materials, 7(15), 1700020. [42]Peng, S., Li, L., Wu, H. B., Madhavi, S., & Lou, X. W. (2015). Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Advanced Energy Materials, 5(2), 1401172. [43]Zhang, Y., Chang, C. R., Gao, H. L., Wang, S. W., Yan, J., Gao, K. Z., ... & Wang, L. Z. (2019). High-performance supercapacitor electrodes based on NiMoO 4 nanorods. Journal of Materials Research, 34(14), 2435-2444. [44]Lattin, W. C., & Utgikar, V. P. (2007). Transition to hydrogen economy in the United States: A 2006 status report. International Journal of Hydrogen Energy, 32(15), 3230-3237. [45]Lu, X., & Zhao, C. (2015). Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nature communications, 6(1), 1-7. [46]Gong, M., Zhou, W., Kenney, M. J., Kapusta, R., Cowley, S., Wu, Y., ... & Dai, H. (2015). Blending Cr2O3 into a NiO–Ni electrocatalyst for sustained water splitting. Angewandte Chemie, 127(41), 12157-12161. [47]Wang, D., Yan, W., Vijapur, S. H., & Botte, G. G. (2013). Electrochemically reduced graphene oxide–nickel nanocomposites for urea electrolysis. Electrochimica Acta, 89, 732-736. [48]Xu, W., Zhang, H., Li, G., & Wu, Z. (2014). Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell. Scientific reports, 4(1), 1-6.
|