|
[1]D.T. Phan, G.S. Chung, 2012, Characteristics of SAW UV sensors based on a ZnO/Si structure using third harmonic mode, Curr. Appl. Phys, vol. 12, pp. 210-213. [2]P. Sharma, K. Sreenivas, 2014, Highly sensitive ultraviolet detector based on ZnO/LiNbO3 hybrid surface acoustic wave filter, Appl. Phys. Lett, vol. 83, pp. 3617-3619. [3]T. Nomura, A. Saitoh, Y. Horikoshi, 2000. Measurement of acoustic properties of liquid using liquid flow SH-SAW sensor system. Sensors and Actuators B: Chemical, vol.76(1-3), pp. 69-73. [4]V.I. Anisimkim, M. Penza, A. Valentini, F. Quaranta, L. Vasanelli, 1995, Detection of combustible gases by means of a ZnO-on-Si surface acoustic wave (SAW) delay line, Sens. Actuators B: Chem, vol. 23, pp. 197-201. [5]Y.-S. Huang, Y.-Y. Chen, T.-T. Wu, 2010, A passive wireless hydrogen surface acoustic wave sensor based on Pt-coated ZnO nanorods, Nanotechnology, vol. 21, pp. 95503. [6]K. Chen, D. Liu, L. Nie, S. Yao, 1994, Determination of urea in urine using a conductivity cell with surface acoustic wave resonator-based measurement circuit, Tandlakartidningen, vol. 41, pp. 2195-2200. [7]I.Y. Huang, M.C. Lee, 2008, Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies, Sens. Actuators B: Chem, vol. 132, pp. 340-348. [8]X.Q. Bao, W. Burkhard, V.V. Varadan, V.K. Varadan, 1987, SAW temperature sensor and remote reading system, IEEE 1987 Ultrason Symp, pp. 583-586. [9]S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, 2005, Recent progress in processing and properties of ZnO, Prog. Mater. Sci, 50, pp. 293-340. [10]Z.L. Wang, 2007,“Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing, Appl. Phys. A, 88 (1), pp. 7-15. [11]M.R.Alfaro Cruz, O.Ceballos-Sanchez, E.Luévano-Hipólito, L.M. Torres-Martínez, 2018. ZnO thin films deposited by RF magnetron sputtering: Effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production, International Journal of Hydrogen Energy, Vol 43, pp. 10301-10310. [12]T. Ghosh, M. Dutta, D. Basak, 2011. Effect of substrate-induced strain on the morphological, electrical, optical and photoconductive properties of RF magnetron sputtered ZnO thin films, Materials Research Bulletin, Vol 46, pp. 1039-1044. [13]N. Bouhssira, S. Abed, E. Tomasella, J. Cellier, A. Mosbah, M.S. Aida, M. Jacquet, 2006. Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation, Applied Surface Science, Vol 252, pp. 5594-5597. [14]T. Li, H.M. Fan, J.M. Xuem J. Ding, 2010.Synthesis of highly-textured ZnO films on different substrates by hydrothermal route, Thin Solid Films, Vol 518, pp. e114-e117. [15]D. D Dominguez, R. Chung, V. Nguyen, D. Tevault, R. A. McGill, 1998. Evaluation of SAW chemical sensors for air filter lifetime and performance monitoring, Sensors and Actuators B: Chemical Vol 53, pp.186-190, pp.129-146. [16]C.L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, P. S. Cheng, 2010. Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator, Thin Solid Films Vol 518, pp. 3059-3062. [17]A.J. Slobodnik, 1979. Miniature surface-acoustic-wave filters, Proceedings of the IEEE, Vol 67. [18]L. Rana, R. Gupta, M. Tomar , V. Gupta, 2017. ZnO/ST-Quartz SAW resonator: An efficient NO2 gas sensor, Sensors and Actuators B: Chemical, Vol 252 , pp. 840-845 [19]H. Mingkai, D. L. Franklin, 2018. Design, fabrication and characterization of SAW devices on LiNbO3 bulk and ZnO thin film substrates, Solid-State Electronics, Vol 150, pp. 28-34 [20]J. Curie, P. Curie, 1880, Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclines, Comptes Rendus de l’Académie des Sciences, pp. 91-294. [21]A. J. Slobodnik, Jr., 1978, Materials and their inlluence on performance. Chapter 6 in Acoustic Surface Waves. Topics in Applied Physics, vol. 24. Berlin: Springer Verlag, ch.6, pp. 226-303. [22]A. Kumar, R. Prajesh. 2022. The potential of acoustic wave devices for gas sensing plications. Sensors and Actuators A: Physical, Vol 339, pp.113498. [23]J. W. Gardner, V. K. Varadan, O. O. Awadelkarim, 2001, Microsensors MEMS and Smart Devices, Willy, pp. 303-316. [24]L. Rayleigh, 1885. On Waves Propagated along the Plane Surface of an Elastic Solid, Proceedings of the London Mathematical Society Vol 1-17, pp. 4-11. [25]S. Kumar, G.H. Kim, K. Sreenivas, R.P. Tandon, 2009, ZnO based surface acoustic wave ultraviolet photo sensor, J. Electroceram., Vol 22, pp. 198-202. [26]D.T. Phan, G.S. Chung, 2012, Characteristics of SAW UV sensors based on a ZnO/Si structure using third harmonic mode, Curr. Appl. Phys., Vol 12, pp. 210-213. [27]W.Li, Y.J.Guo, Q.B.Tang, X.T.Zu, J.Y.Ma, L.Wang, K.Tao, H.Torun, Y.Q.Fue, 2019, Highly sensitive ultraviolet sensor based on ZnO nanorod film deposited on ST-cut quartz surface acoustic wave devices, Surf Coat Technol, Vol 363, pp. 419-425. [28]W.B. Peng, Y.N. He, C.B. Wen, K. Ma, 2012, Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer, Sens Actuator A-Phys, Vol 184, pp. 34-40. [29]P. Tournois, C. Lardat, 1969, Love Wave-Dispersive Delay Lines for Wide-Band Pulse Compression, Trans. Sonic Ultrasonics, SU-16, pp. 107-117. [30]H. A. Jehn, 1992, Nucleation and Growth of Thin Films , Advanced Techniques for Surface Engineering, vol. 1, pp. 5-29. [31]R. M. White and F. W. Voltmer, 1965. Direct piezoelectric coupling to surface elasticwaves, Appl. Phys. Lett. vol. 7, pp. 314. [32]W. Water, Y. S. Yan, andT. M. Meen, 2008. Effect of magnesium doping on the structural and piezoelectric properties of sputtered ZnO thin film, Sensors and Actuators A, Vol 144, pp. 105-108. [33]D.S.Ballantine, R.M. White, 1997, Acoustic Wave Sensors—Theory, Design and Physico-chemical Applications, Academic Press, New York. [34]D. T. Phan, G. S. Chung, 2011. The effect of post-annealing on surface acoustic wave devices based on ZnO thin films prepared by magnetron sputtering, Applied Surface Science Vol 257, pp. 4339-4343. [35]X. Duan, G. Chen, Lu'an Guo, Youzhang Zhu, Honggang Ye, Yelong Wu, 2015. A template-free CVD route to synthesize hierarchical porous ZnO films, Superlattices and Microstructures, Vol 88, pp. 501-507. [36]H. Ogawa, T. Higuchi, A. Nakamura, S. Tokita, D. Miyazaki, T. Hattori, and T. Tsukamoto, 2008. Growth of TiO2 thin film by reactive RF magnetron using oxygen radical, Journal of Alloys and Compounds, Vol 449, pp. 375-378. [37]S. Tanemuraa, L. Miaoa, P. Jinb, K. Kanekoc, A. Teraid, and N. Nabatova-Gabain, 2003. Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering, Applied Surface Science, Vol 212-213, pp. 654-660. [38]L. Miaoa, P. Jinb, K. Kanekoc, A. Teraid, N. Nabatova-Gabaind, and S. Tanemura, 2003. Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering, Applied Surface Science, Vol 212-213, pp. 255-263. [39]K. Cicek, T. Karacali, H. Efeoglu, B. Cakmak, 2017. Deposition of ZnO thin films by RF&DC magnetron sputtering on silicon and porous-silicon substrates for pyroelectric applications, Sensors and Actuators A: Physical, Vol 260, pp. 24-28. [40]Y. Cui, H.. Du, J. Xiao, and L. Wen, 2008. Effects of Power Density and Post Annealing process on the Microstructure and Wettability of TiO2 Films Deposited by Mid-frequency Magnetron Reactive Sputtering, J. Mater. Sci. Technol, Vol 24, pp.172-178. [41]M. Masłyk, M.A. Borysiewicz, M. Wzorek, T. Wojciechowski, M. Kwoka, E. Kamińska, 2016. Influence of absolute argon and oxygen flow values at a constant ratio on the growth of Zn/ZnO nanostructures obtained by DC reactive magnetron sputtering, Applied Surface Science, Vol 389, pp. 287-293. [42]J. A. Thornton, 1974, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings , J.Vac. Sci. Technol., vol. 11, pp. 666-670. [43]G. Amin, 2012. ZnO and CuO Nanostructures: Low Temperature Growth, Characterization, their Optoelectronicand Sensing Applications, Linköping Studies in Science and Technology Dissertation, No. 1441. [44]Z. L. Wang, 2004, Zinc oxide nanostructures: growth, properties and applications, Journal of Physics: Condensed Matter, vol.16. [45]A. B. Marchand, M. Loubat, A. Graillot, J. Volk, R. Dauksevicius, E. Saoutieff, A. Viana, B. Christian, V. Lebedev, C. Sturm, C. Loubat, 2016. UV-crosslinked Polymeric Materials for Encapsulation of ZnO Nanowires in Piezoelectric Fingerprint Sensors, Procedia Engineering, Vol 168, pp. 1135-1139. [46]V. Galstyan, E. Comini, C. Baratto, G. Faglia, G. Sberveglieri, 2015. Nanostructured ZnO chemical gas sensors, Ceramics International, Vol 41, Part B, pp. 14239-14244. [47]M. Thepnurat, P. Ruankham, S. Phadunghitidhada, A. Gardchareon, D. Wongratanaphisan, S. Choopun, Efficient charge-transport UV sensor based on interlinked ZnO tetrapod networks, Surface and Coatings Technology, Vol 306, Part A, Pages 25-29, 2016. [48]L. Zhang, A. Konno, 2018. Development of Flexible Dye-sensitized Solar Cell Based on Predyed Zinc Oxide Nanoparticle, Int. J. Electrochem. Sci., pp. 344-352. [49]K. Narimani, F.D. Nayeri, M. Kolahdouz, P. Ebrahimi. 2015. Fabrication, modeling and simulation of High sensitivity capacitive humidity sensors based on ZnO nanorods. Sensors and Actuators B: Chemical, Vol 215, pp. 197202,1SSN 0925-4005. [50]Y. Lee, S. Kim, D. Kim, C. Lee, H. Park, J.H. Lee. 2020.“Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet. Applied Surface Science, Vol 509, pp.145328. [51]J. R. Huang, Y. J. Wu, C. P. Gu, M. H. Zhai, K. Yu, M. Yang, J. H. Liu, 2010. Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property. Sensor. Actuat.B-Chem, Vol 146, pp.206-212. [52]B. Dey, R. Narzary, S. N. Rout, M. Kar, S. Ravi, S.K. Srivastava, 2023, Room temperature ferromagnetism, optical band gap widening in Mg-doped ZnO compounds for spintronics applications, Ceramics International, Vol 49, pp. 35860-35871. [53]E. Nurfani, L. Nulhakim, D. M. Muhammad, M. Rozana, W. Astuti, 2024, The enhanced sensing performance of ZnO-based photodetector by Mg doping, Optical Materials, Vol 148, pp. 114948. [54]R. Sagheer, M. Khalil, V. Abbas, Z. N. Kayani, U. Tariq, F. Ashraf, 2020, Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles, Optik, Vol 200, pp. 163428. [55]A. Tiwari, P.P. Sahay, 2023, Improved transparent conductive properties of highly c-axis oriented ZnO thin films upon (Ga, Mg) co-doping, Micro and Nanostructures, Vol 181, pp. 207617. [56]F. L. Duan, Z. Yang, Z. Ji, H. Weng, Z. Xie, A. Shen, S. Mi, X. Chen, Y. Chen, Q. Liu, 2019, Process optimization and device variation of Mg-doped ZnO FBARs, Solid-State Electronics, Vol 151, pp. 11-17. [57]E. Indrajith Naik, T.S. Sunil Kumar Naik, E. Pradeepa, Simranjeet Singh, H.S. Bhojya Naik, 2022, Design and fabrication of an innovative electrochemical sensor based on Mg-doped ZnO nanoparticles for the detection of toxic catechol, Materials Chemistry and Physics, Vol 281, pp. 125860. [58]S. J. Young and Y. H. Liu, 2017, High Response of Ultraviolet Photodetector Based on Al-Doped ZnO Nanosheet Structures, IEEE Journal of Selected Topics in Quantum Electronics, Vol 23, pp. 1-5 [59]R. Yukawa, S. Yamamoto, K. Ozawa, M. Emori, M. Ogawa, Sh. Yamamoto, K. Fujikawa, R. Hobara, S. Kitagawa, H. Daimon, H. Sakama, and I. Matsuda, 2014. Electron-hole recombination on ZnO(0001) single-crystal surface studied by time-resolved soft X-ray ctron spectroscopy, in Applied Physics Letters, Vol 105. [60]J.D.N. Cheeke, Z. Wang, 1999, Acoustic wave gas sensors, Sens Actuator B-Chem, Vol 59, pp. 146-15. [61]M. Rotter, A. Wixforth, W. Ruile, D. Bernklau, H. Riechert, 1998, Giant acoustoelectric effect in GaAs/LiNbO3 hybrids, Appl Phys Lett, Vol 73, pp. 2128-2130. [62]A. Wixforth, J. Scriba, M. Wassermeier, J. P. Kotthaus, 1989, Surface acoustic waves on GaAs/AlxGa1–xAs heterostructures, Phys Rev B, Vol 40, pp. 7874-7887. [63]W. Li, Y.J. Guo, Q.B. Tang, X. T. Zu, J. Y. Ma, L. Wang, K. Tao, H. Torun, and Y.Q. Fu. 2019. Highly sensitive ultraviolet sensor based on ZnO nanorod film deposited on ST-cut quartz. Surface acoustic wave devices. Surface and Coatings Technology, Vol 363, pp. 419-425. [64]H.F. Pang, Y.Q. Fu, Z.J. Li, et al., 2013, Love mode surface acoustic wave ultraviolet sensor using ZnO films deposited on 36°Y-cut LiTaO3” ,Sens Actuator A-Phys, Vol 193, pp. 87-94. [65]P. Zhou, C. Chen, X. Wang, B. Hu, H. San. 2018. 2- Dimentional photoconductive MoS2 nanosheets using in surface acoustic wave resonators for ultraviolet light sensing. Sensors and Actuators A: Physical, Vol 271, pp. 389-397. [66]D.T. Phan, G.S. Chung, 2012, Characteristics of SAW UV sensors based on a ZnO/Si structure using third harmonic mode, Curr. Appl. Phys., Vol 12, pp. 210-213. [67]C.L. Wei, Y.C. Chen, C.C. Cheng, et al, 2010, Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator, Thin Solid Films, Vol 518, c 3059-3062. [68]S. Kumar, G.H. Kim, K. Sreenivas, R.P. Tandon, 2009, ZnO based surface acoustic wave ultraviolet photo sensor, J. Electroceram., Vol 22, pp. 198-202. [69]W.Li, Y.J.Guo, Q.B.Tang, X.T.Zu, J.Y.Ma, L.Wang, K.Tao, H.Torun, Y.Q.Fue, 2019, Highly sensitive ultraviolet sensor based on ZnO nanorod film deposited on ST-cut quartz surface acoustic wave devices, Surf Coat Technol, Vol 363, pp. 419-425. [70]W.B. Peng, Y.N. He, X.L. Zhao, 2013, Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors, J Micromech Microeng, 23, Article 125008.
|