|
[1]Tapingkae, P., Panjaburee, P., Hwang, G., & Srisawasdi, N. (2020). Effects of a formative assessment-based contextual gaming approach on students’ digital citizenship behaviours, learning motivations, and perceptions. Computers & Education, 159, 103998. doi: 10.1016/j.compedu.2020.103998 [2]XIN-YU HOU(2020)。Based on Convolutional Neural Networks Design of Intilligent Object Recognition Technique to Develop Interactive Response Portfolio System〔 Unpublished〕。National Formosa University。 [3]Imura, T., Fukumi, M., Akamatsu, N., & Nakaura, K. (2004). Face Search by Neural Network Based Skin Color Threshold Method. Lecture Notes In Computer Science, 840-846. doi: 10.1007/978-3-540-30132-5_113 [4]Hernández-Hernández, J., Hernández-Hernández, M., Feliciano-Morales, S., Álvarez-Hilario, V., & Herrera-Miranda, I. (2017). Search for Optimum Color Space for the Recognition of Oranges in Agricultural Fields. Communications In Computer And Information Science, 296-307. doi: 10.1007/978-3-319-67283-0_22 [5]Supe, K., Jaiswal, K., Khan, A., Katkar, V., & Nirmal, P. (2017). Image Classification Using Discrete Block Truncation Coding. Advances In Intelligent Systems And Computing, 393-402. doi: 10.1007/978-981-10-2750-5_41 [6]Ganeswara Rao, M., Panakala, R., & Mallikarjuna Prasad, A. (2018). A New VLSI Architecture for Skin Tone Detection in an Uncontrolled Background. Lecture Notes In Electrical Engineering, 847-854. doi: 10.1007/978-981-10-7329-8_87 [7]Tang, J., Yang, G., Sun, Y., Xin, J., & He, D. (2019). Salient object detection of dairy goats in farm image based on background and foreground priors. Neurocomputing, 332, 270-282. doi: 10.1016/j.neucom.2018.12.052 [8]Yu, X., Fernando, B., Ghanem, B., Porikli, F., & Hartley, R. (2018). Face Super-Resolution Guided by Facial Component Heatmaps. Computer Vision – ECCV 2018, 219-235. doi: 10.1007/978-3-030-01240-3_14 [9]Dittimi, T., & Suen, C. (2020). Single Image Super-Resolution for Medical Image Applications. Pattern Recognition And Artificial Intelligence, 660-666. doi: 10.1007/978-3-030-59830-3_57 [10]Hyun, S., & Heo, J. (2020). VarSR: Variational Super-Resolution Network for Very Low Resolution Images. Computer Vision – ECCV 2020, 431-447. doi: 10.1007/978-3-030-58592-1_26 [11]Sharma, M., Chaudhury, S., & Lall, B. (2017). Space-Time Super-Resolution Using Deep Learning Based Framework. Lecture Notes In Computer Science, 582-590. doi: 10.1007/978-3-319-69900-4_74 [12]Basty, N., & Grau, V. (2018). Super Resolution of Cardiac Cine MRI Sequences Using Deep Learning. Image Analysis For Moving Organ, Breast, And Thoracic Images, 23-31. doi: 10.1007/978-3-030-00946-5_3 [13]Niu, Z., Liu, L., Zhang, K., Dong, J., Yang, Y., & Mao, X. (2018). Single Image Super-Resolution via Perceptual Loss Guided by Denoising Auto-Encoder. Lecture Notes In Computer Science, 126-136. doi: 10.1007/978-3-319-97304-3_10 [14]Pan, Z., & Shen, H. (2018). Multispectral Image Super-Resolution Using Structure-Guided RGB Image Fusion. Pattern Recognition And Computer Vision, 155-167. doi: 10.1007/978-3-030-03398-9_14 [15]Quan, L., & Kim, Y. (2019). Iterative Application of Autoencoders for Video Inpainting and Fingerprint Denoising. Inpainting And Denoising Challenges, 63-76. doi: 10.1007/978-3-030-25614-2_5 [16]Patel, N., Shinde, S., & Poly, F. (2020). Automated Damage Detection in Operational Vehicles Using Mask R-CNN. Algorithms For Intelligent Systems, 563-571. doi: 10.1007/978-981-15-3242-9_54 [17]Wang, X., Xie, T., & Chen, L. (2019). Urban Village Identification from City-Wide Satellite Images Leveraging Mask R-CNN. Advances In Intelligent Systems And Computing, 166-172. doi: 10.1007/978-3-030-29933-0_14 [18]Patil, A. (2020). Car Damage Recognition Using the Expectation Maximization Algorithm and Mask R-CNN. Information And Communication Technology For Intelligent Systems, 607-616. doi: 10.1007/978-981-15-7062-9_61 [19]Li, Z., Miao, D., Liang, H., Zhang, H., Liu, J., & He, Z. (2019). Efficient and Accurate Iris Detection and Segmentation Based on Multi-scale Optimized Mask R-CNN. Lecture Notes In Computer Science, 715-726. doi: 10.1007/978-3-030-34110-7_60 [20]de F. Souza, L., Holanda, G., Alves, S., dos S. Silva, F., & Filho, P. (2020). Automatic Lung Segmentation in CT Images Using Mask R-CNN for Mapping the Feature Extraction in Supervised Methods of Machine Learning. Advances In Intelligent Systems And Computing, 140-149. doi: 10.1007/978-3-030-49342-4_14 [21]Cheng, T., Wang, X., Huang, L., & Liu, W. (2020). Boundary-Preserving Mask R-CNN. Computer Vision – ECCV 2020, 660-676. doi: 10.1007/978-3-030-58568-6_39 [22]Liu, Z., Yang, C., Huang, J., Liu, S., Zhuo, Y., & Lu, X. (2021). Deep learning framework based on integration of S-Mask R-CNN and Inception-v3 for ultrasound image-aided diagnosis of prostate cancer. Future Generation Computer Systems, 114, 358-367. doi: 10.1016/j.future.2020.08.015 [23]AutoEncoder (一)-認識與理解: https://medium.com/%E7%A8%8B%E5%BC%8F%E5%B7%A5%E4%BD%9C%E7%B4%A1/autoencoder-%E4%B8%80-%E8%AA%8D%E8%AD%98%E8%88%87%E7%90%86%E8%A7%A3-725854ab25e8 [24]【影像處理】峰值信噪比 Peak Single-to-Noise Ratio: https://jason-chen-1992.weebly.com/home/-peak-single-to-noise-ratio [25]峰值訊噪比: https://zh.wikipedia.org/wiki/%E5%B3%B0%E5%80%BC%E4%BF%A1%E5%99%AA%E6%AF%94 [26]RCNN,Fast RCNN,Faster RCNN比較歸納總結: https://blog.csdn.net/xiaoye5606/article/details/71191429 [27]Mask RCNN學習筆記: https://www.twblogs.net/a/5b7a8e7a2b7177392c964b74 [28]例項分割模型Mask R-CNN詳解:從R-CNN,Fast R-CNN,Faster R-CNN再到Mask R-CNN: https://www.itread01.com/content/1547791045.html [29]詳解 ROI Align 的基本原理和實現細節: https://codertw.com/%E7%A8%8B%E5%BC%8F%E8%AA%9E%E8%A8%80/590370/
|