|
1.Davison, J., Low Cost, Novel Methods for Fabricating All-Solid-State Lithium Ion Batteries. 2012. 2.Tatsumisago, M., M. Nagao, and A. Hayashi, Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. Journal of Asian Ceramic Societies, 2013. 1(1): p. 17-25. 3.蘇稘翃, 穿戴式產品之可撓式全固態薄膜鋰電池. Journal of Taiwan Energy, 2015. 2(3): p. 279-292. 4.Climbing, E., in https://www.elevatedclimbing.com/products/18650-panasonic-battery. 5.Akolkar, R., Mathematical model of the dendritic growth during lithium electrodeposition. Journal of Power Sources, 2013. 232: p. 23-28. 6.Akolkar, R., Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. Journal of Power Sources, 2014. 246: p. 84-89. 7.Spotnitz, R. and J. Franklin, Abuse behavior of high-power, lithium-ion cells. Journal of Power Sources, 2003. 113(1): p. 81-100. 8.Kim, J.G., et al., A review of lithium and non-lithium based solid state batteries. Journal of Power Sources, 2015. 282: p. 299-322. 9.Patil, A., et al., Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin. 43(8–9): p. 1913-1942. 10.Danilov, D., R.A.H. Niessen, and P.H.L. Notten, Modeling All-Solid-State Li-Ion Batteries. Journal of The Electrochemical Society, 2011. 158(3): p. A215-A222. 11.Palacin, M.R., Recent advances in rechargeable battery materials: a chemist''s perspective. Chemical Society Reviews, 2009. 38(9): p. 2565-2575. 12.Yu, X., et al., A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride. Journal of The Electrochemical Society, 1997. 144(2): p. 524-532. 13.Bates, J.B., Thin film battery and electrolyte therefor. 2004, Google Patents. 14.Fabre, S.D., et al., Charge/Discharge Simulation of an All-Solid-State Thin-Film Battery Using a One-Dimensional Model. Journal of The Electrochemical Society, 2011. 159(2): p. A104-A115. 15.Pereira, T., et al., The performance of thin-film Li-ion batteries under flexural deflection. Journal of Micromechanics and Microengineering, 2006. 16(12): p. 2714. 16.Wei, Y., Performance of flat polymer Li2ion battery under mechanical deflections. China Academic Journal Electronic Publishing House, 2007. 17.Koo, M., et al., Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems. Nano Letters, 2012. 12(9): p. 4810-4816. 18.Ultrahigh Performance Cu2ZnSnS4 Thin Film and Its Application in Microscale Thin Film Lithium-Ion Battery: Comparison with SnO2. ACS Applied Materials & Interfaces, 2016. 19.Oudenhoven, J.F.M., L. Baggetto, and P.H.L. Notten, All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts. Advanced Energy Materials, 2011. 1(1): p. 10-33. 20.Herbert, E.G., et al., Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films, 2011. 520(1): p. 413-418. 21.Van der Ven, A. and G. Ceder, Lithium Diffusion in Layered Li x CoO2. Electrochemical and Solid-State Letters, 2000. 3(7): p. 301-304. 22.Stoldt, C.R. and S.H. Lee. All-solid-state lithium metal batteries for next generation energy storage. in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). 2013. 23.Grillon, N., et al., Failure Mechanisms Analysis of All-Solid-State Thin Film Microbatteries from an Extended Electrochemical Reliability Study. Journal of The Electrochemical Society, 2015. 162(14): p. A2847-A2853. 24.Newman, J. and W. Tiedemann, Porous-electrode theory with battery applications. AIChE Journal, 1975. 21(1): p. 25-41. 25.Becker-Steinberger, K., et al., A Mathematical Model for All Solid-State Lithium Ion Batteries. Meeting Abstracts, 2009. MA2009-02(8): p. 704-704. 26.Martin, S.W. and C.A. Angell, Dc and ac conductivity in wide composition range Li2O-P2O5 glasses. Journal of Non-Crystalline Solids, 1986. 83(1): p. 185-207. 27.Danilov, D. and P.H.L. Notten, Mathematical modelling of ionic transport in the electrolyte of Li-ion batteries. Electrochimica Acta, 2008. 53(17): p. 5569-5578. 28.Aizawa, Y., et al., In situ electron holography of electric potentials inside a solid-state electrolyte: Effect of electric-field leakage. Ultramicroscopy, 2017. 178: p. 20-26. 29.Allen J. Bard, L.R.F., ELECTROCHEMICAL METHODS Fundamentals and Applications. 2001. 30.Ramadass, P., et al., Mathematical modeling of the capacity fade of Li-ion cells. Journal of Power Sources, 2003. 123(2): p. 230-240. 31.Kuwata, N., et al., Lithium diffusion coefficient in amorphous lithium phosphate thin films measured by secondary ion mass spectroscopy with isotope exchange methods. Solid State Ionics, 2016. 294: p. 59-66. 32.Munoz, F., et al., Increased electrical conductivity of LiPON glasses produced by ammonolysis. Solid State Ionics, 2008. 179(15-16): p. 574-579. 33.Pramanik, S. and S. Anwar, Electrochemical model based charge optimization for lithium-ion batteries. Journal of Power Sources, 2016. 313: p. 164-177. 34.Hockicko, P., P. Bury, and F. Munoz, Electrical and dielectric properties of LiPON glasses. 2012: p. 488-492. 35.Larfaillou, S., et al., Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy. Journal of Power Sources, 2016. 319: p. 139-146. 36.Dubarry, M., A. Devie, and B.Y. Liaw, Cell-balancing currents in parallel strings of a battery system. Journal of Power Sources, 2016. 321: p. 36-46. 37.劉季清, 三星正式說明:三大原因造成 Galaxy Note 7 事故!, in 自由時報. 2017. 38.Gasco, F. and P. Feraboli, Manufacturability of composite laminates with integrated thin film Li-ion batteries. Journal of Composite Materials, 2014. 48(8): p. 899-910. 39.Schultz, R., Lithium: Measurement of Young''s Modulus and Yield Strength 2002.
|