|
1.張銀祐, 陰極電弧活化沉積含金屬類鑽碳膜之製程與特性研究. 國立中興大學材料工程學研究所碩士論文. 2004. 2.蔡定平, 真空技術與應用. 2001, 新竹市: 國家實驗研究院儀器科技研究中心出版. 3.趙浩勇、何主亮、陳克昌, 如何減少陰極電弧電漿陳機薄膜上的微粒. 表面技術雜誌. Vol. 153. 1995. 4.張銀祐, 表面工程. 國立虎尾科技大學教學手冊. 2013. 5.Nishibori, M., How to solve problems of films coated by ARC methods. Surface & Coatings Technology, 1992. 52: p. 229-323. 6.M. Keidar, I.B., R.L. Boxman, S. Goldsmith, Macropartic1e interaction with a substrate in cathodic vacuum arc deposition. Surface & Coatings Technology, 1996. 86-87: p. 415-420. 7.J. Koskinen, U.E., A. Mahiout, R. Lahtinen, J.-P. Hirvonen, S.-P. Hannula, Porosity of thin diamond-like carbon films deposited by an arc discharge method. Surface & Coatings Technology, 1993. 62: p. 356-360. 8.W.C. Lang, J.Q.X., J. Gong, C. Sun, R.F. Huang, L.S. Wen, Study on cathode spot motion and macroparticles reduction in axisymmetric magnetic field-enhanced vacuum arc deposition. Vacuum, 2010. 84: p. 1111-1117. 9.Hirofumi Takikawa, H.T., Review of Cathodic Arc Deposition for Preparing Droplet-Free Thin Films. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2007. 35: p. 992-999. 10.Aksenov, I.I.B., V.A.; Padalka, V.G.; Khoroshikh, V.M., Transport of plasma streams in a curvilinear plasma-optics system. Sov. J. Plasma Phys., 1978. 4: p. 425-428. 11.Anders, S., Anders, A., Dickinson, M. R., MacGill, R. A., & Brown,, . IEEE Transactions on Plasma Science, 1997. 25: p. 670-674. 12.Andre AndersU, R.A.M., . Surface & Coatings Technology, 2000. 113-134: p. 96-100. 13.Mo, J.L. and M.H. Zhu, Tribological characterization of chromium nitride coating deposited by filtered cathodic vacuum arc. Applied Surface Science, 2009. 255(17): p. 7627-7634. 14.Fan, Q., et al., Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013. 708: p. 78-82. 15.Hu, J., et al., Enhanced discharge and microstructure of the ta-C coatings by electromagnetically enhanced cathodic arc at argon atmosphere. Surface and Coatings Technology, 2019. 365: p. 227-236. 16.張詠傑, 陰極電弧系統之新型電磁控弧源設計與沉積 氮化鋁鈦硬質薄膜機械性質研究. 2018. 17.Thornton, J.A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670. 18.Mukherjee, S. and D. Gall, Structure zone model for extreme shadowing conditions. Thin Solid Films, 2013. 527: p. 158-163. 19.Anders, A., A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films, 2010. 518(15): p. 4087-4090. 20.Callister, W.D.J., Materials Science and Engineering: An Introduction. John Wiley & Sons, Inc. 2007. 21.Wang, Y.X. and S. Zhang, Toward hard yet tough ceramic coatings. Surface and Coatings Technology, 2014. 258: p. 1-16. 22.Greer, J.R. and J.T.M. De Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Progress in Materials Science, 2011. 56(6): p. 654-724. 23.連振昌, 工程材料. 國立嘉義大學. 2009. 24.S. Vepfek *, M.H., S. Reiprich, Li Shizhi', J. Dian, . Surface and Coatings Technology, 1996. 86-87: p. 394-401. 25.Vepřek, S., New development in superhard coatings: the superhardnanocrystalline-amorphous composites. Thin Solid Films, 1998. 317: p. 449-454. 26.Musil, J., Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surface and Coatings Technology, 2012. 207: p. 50-65. 27.Veprˇek, S., Electronic and mechanical properties of nanocrystalline composites whenapproaching molecular size. Thin Solid Films, 1997. 297: p. 145-153. 28.Holleck, H. and V. Schier, Multilayer PVD coatings for wear protection. Surface and Coatings Technology, 1995. 76-77: p. 328-336. 29.Ali, R., M. Sebastiani, and E. Bemporad, Influence of Ti–TiN multilayer PVD-coatings design on residual stresses and adhesion. Materials & Design, 2015. 75: p. 47-56. 30.Maria Nordin , M.L., Sture Hogmark, Mechanical and tribological properties of multilayered PVD TiNr/CrN. Wear, 1999. 232: p. 221-225. 31.Lin, J., W.D. Sproul, and J.J. Moore, Microstructure and properties of nanostructured thick CrN coatings. Materials Letters, 2012. 89: p. 55-58. 32.Lorenzo-Martin, C., et al., Effect of microstructure and thickness on the friction and wear behavior of CrN coatings. Wear, 2013. 302(1-2): p. 963-971. 33.Arias, D.F., et al., A mechanical and tribological study of Cr/CrN multilayer coatings. Materials Chemistry and Physics, 2015. 160: p. 131-140. 34.Ou, Y.X., et al., Mechanical and tribological properties of CrN/TiN multilayer coatings deposited by pulsed dc magnetron sputtering. Surface and Coatings Technology, 2015. 276: p. 152-159. 35.Roa, J.J., et al., Contact damage and fracture micromechanisms of multilayered TiN/CrN coatings at micro- and nano-length scales. Thin Solid Films, 2014. 571: p. 308-315. 36.Chim, Y.C., et al., Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2009. 517(17): p. 4845-4849. 37.Mo, J.L., et al., Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings. Surface and Coatings Technology, 2013. 215: p. 170-177. 38.Chang, Y.-Y., S.-J. Yang, and D.-Y. Wang, Structural and mechanical properties of AlTiN/CrN coatings synthesized by a cathodic-arc deposition process. Surface and Coatings Technology, 2006. 201(7): p. 4209-4214. 39.Chang, Y.-Y. and D.-Y. Wang, Characterization of nanocrystalline AlTiN coatings synthesized by a cathodic-arc deposition process. Surface and Coatings Technology, 2007. 201(15): p. 6699-6701. 40.Dejun, K. and G. Haoyuan, Friction-wear behaviors of cathodic arc ion plating AlTiN coatings at high temperatures. Tribology International, 2015. 88: p. 31-39. 41.Xiao, B.-J., et al., Microstructure, mechanical properties and cutting performance of AlTiN coatings prepared via arc ion plating using the arc splitting technique. Surface and Coatings Technology, 2017. 311: p. 98-103. 42.Chen, J., H. Li, and B.D. Beake, Load sensitivity in repetitive nano-impact testing of TiN and AlTiN coatings. Surface and Coatings Technology, 2016. 308: p. 289-297. 43.Alvarez-Vera, M., et al., Wear resistance of TiN or AlTiN nanostructured Ni-based hardfacing by PTA under pin on disc test. Wear, 2019. 426-427: p. 1584-1593. 44.Chang, Y.-Y., D.-Y. Wang, and C.-Y. Hung, Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process. Surface and Coatings Technology, 2005. 200(5-6): p. 1702-1708. 45.Bouzakis, K.D., et al., Ambient and elevated temperature properties of TiN, TiAlN and TiSiN PVD films and their impact on the cutting performance of coated carbide tools. Surface and Coatings Technology, 2009. 204(6-7): p. 1061-1065. 46.Veprek, S. and M.G.J. Veprek-Heijman, The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites. Surface and Coatings Technology, 2007. 201(13): p. 6064-6070. 47.Yang, S.-M., et al., Mechanical and tribological properties of multilayered TiSiN/CrN coatings synthesized by a cathodic arc deposition process. Surface and Coatings Technology, 2008. 202(10): p. 2176-2181. 48.Yang, S.-M., et al., Mechanical properties of nano-structured Ti-Si-N films synthesized by cathodic arc evaporation. Journal of Alloys and Compounds, 2007. 440(1-2): p. 375-379. 49.Guo, C.T., D. Lee, and P.C. Chen, Deposition of TiSiN coatings by arc ion plating process. Applied Surface Science, 2008. 254(10): p. 3130-3136. 50.Wang, C.Y., et al., Wear and breakage of TiAlN- and TiSiN-coated carbide tools during high-speed milling of hardened steel. Wear, 2015. 336-337: p. 29-42. 51.Chang, Y.-Y., et al., High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process. Journal of Alloys and Compounds, 2008. 461(1-2): p. 336-341. 52.Polcar, T. and A. Cavaleiro, High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings. Surface and Coatings Technology, 2011. 206(6): p. 1244-1251. 53.Tritremmel, C., et al., Influence of Al and Si content on structure and mechanical properties of arc evaporated Al–Cr–Si–N thin films. Thin Solid Films, 2013. 534: p. 403-409. 54.Chang, C.-C., et al., Influence of Si contents on tribological characteristics of CrAlSiN nanocomposite coatings. Thin Solid Films, 2015. 584: p. 46-51. 55.Park, I.-W., et al., Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system. Surface and Coatings Technology, 2007. 201(9-11): p. 5223-5227. 56.Chen, H.-W., et al., Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings. Surface and Coatings Technology, 2010. 205(5): p. 1189-1194. 57.Ding, X.-z., X.T. Zeng, and Y.C. Liu, Structure and properties of CrAlSiN Nanocomposite coatings deposited by lateral rotating cathod arc. Thin Solid Films, 2011. 519(6): p. 1894-1900. 58.Chang, Y.-Y. and C.-Y. Hsiao, High temperature oxidation resistance of multicomponent Cr–Ti–Al–Si–N coatings. Surface and Coatings Technology, 2009. 204(6-7): p. 992-996. 59.Keunecke, M., et al., Modified TiAlN coatings prepared by d.c. pulsed magnetron sputtering. Surface and Coatings Technology, 2010. 205(5): p. 1273-1278. 60.Zhang, S., et al., Structural optimisation and synthesis of multilayers and nanocomposite AlCrTiSiN coatings for excellent machinability. Surface and Coatings Technology, 2015. 277: p. 23-29. 61.Lou, B.-S., et al., Hybrid high power impulse and radio frequency magnetron sputtering system for TiCrSiN thin film depositions: Plasma characteristics and film properties. Surface and Coatings Technology, 2018. 350: p. 762-772. 62.Kuo, Y.-C., C.-J. Wang, and J.-W. Lee, The microstructure and mechanical properties evaluation of CrTiAlSiN coatings: Effects of silicon content. Thin Solid Films, 2017. 638: p. 220-229. 63.Shtansky, D.V., et al., Comparative investigation of Al- and Cr-doped TiSiCN coatings. Surface and Coatings Technology, 2011. 205(19): p. 4640-4648. 64.Yuan, Y., et al., Relationship of microstructure, mechanical properties and hardened steel cutting performance of TiSiN-based nanocomposite coated tool. Journal of Manufacturing Processes, 2017. 28: p. 399-409. 65.Davim, J.P., Modern Machining Technology A Practical Guide. 2011: Woodhead Publishing. 66.葉思武, 高速切削技術近況與實現高速切削的切削工具. 機械月刊, 1998. 7. 67.Mitsubishi materials permanent courses-End milling. 68.ISO 26443:2008 ,Fine ceramics (advanced ceramics, advanced technical ceramics) -- Rockwell indentation test for evaluation of adhesion of ceramic coatings. International Organization for Standardization, 2008. 69.Larsson, P.L., On the Invariance of Hardness at Vickers Indentation of Pre-Stressed Materials. Metals, 2017. 7: p. 260. 70.Quinn, G.D., Fracture Toughness of Ceramics by the Vickers Indentation Crack Length Method: A Critical Review. Ceramic Engineering and Science Proceedings, 2006. 71.Ranjana Saha, W.D.N., Effects of the substrate on the determination of thin filmmechanical properties by nanoindentation. Acta Materialia, 2002. 50(1): p. 23-38. 72.Wu, H., et al., Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement. Applied Surface Science, 2015. 324: p. 160-167. 73.K. Bobzin , G.J., Gebrauchsdauerhypothese PVD-beschichteter Bauteile im Trockenlauf Deutschen Bundesministerium für Wirtschaft und Technologie 2012. 74.J.C.A. Batista *, C.G., A. Matthews a, ba, Impact testing of duplex and non-duplex (Ti,Al)N and Cr–N PVD coatings. Surface and Coatings Technology, 2003. 163–164 p. 353–361. 75.Bruslind, L., Microbiology. 76.羅聖全, 研發奈米科技的基本工具之一電子顯微鏡介紹-TEM. 小奈米大世界. 77.Yiyi Wang, A.S.Ö., Gözde Özaydin, Karl F. Ludwig, Jr., Anirban Bhattacharyya, Theodore D. Moustakas, Hua Zhou, Randall L. Headrick, and D. Peter Siddons, Real-time synchrotron x-ray studies of low- and high-temperature nitridation of c-plane sapphire. Phys. Rev. B74, 2006. 78.Boriana Mihailova, U.B., Structural transformations in complex perovskite-type relaxor and relaxor-based ferroelectrics at high pressures and temperatures. 2012. 79.Haršáni, M., et al., Adhesive-deformation relationships and mechanical properties of nc-AlCrN/a-SiNx hard coatings deposited at different bias voltages. Thin Solid Films, 2018. 650: p. 11-19. 80.Lomello, F., et al., Influence of bias voltage on properties of AlCrN coatings prepared by cathodic arc deposition. Surface and Coatings Technology, 2013. 224: p. 77-81. 81.Chang, C.-L., et al., Influence of bias voltages on the structure and wear properties of TiSiN coating synthesized by cathodic arc plasma evaporation. Thin Solid Films, 2008. 516(16): p. 5324-5329. 82.Musil, J. and M. Jirout, Toughness of hard nanostructured ceramic thin films. Surface and Coatings Technology, 2007. 201(9-11): p. 5148-5152. 83.Chang, Y.-Y. and C.-P. Chang, Microstructural and mechanical properties of graded and multilayered AlxTi1-xN/CrN coatings synthesized by a cathodic-arc deposition process. Surface and Coatings Technology, 2009. 204(6-7): p. 1030-1034. 84.Zhang, Q., et al., Tribological properties, oxidation resistance and turning performance of AlTiN/AlCrSiN multilayer coatings by arc ion plating. Surface and Coatings Technology, 2018. 356: p. 1-10. 85.S.J.Bull, Failure mode maps in the thin film scratch adhesion test. Tribology International, 1997. 30(7): p. 491-498. 86.Wang, Y.X., et al., Influence of bias voltage on the hardness and toughness of CrAlN coatings via magnetron sputtering. Surface and Coatings Technology, 2012. 206(24): p. 5103-5107. 87.Vaz, F., et al., Mechanical characterization of reactively magnetron-sputtered TiN films. Surface and Coatings Technology, 2003. 174-175: p. 375-382. 88.C.-H. Ma *, J.-H.H., Haydn Chen a, ba Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin Solid Films, 2002. 418: p. 73-78. 89.Xi, Y., et al., Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films. Ceramics International, 2017. 43(15): p. 11992-11997. 90.Han, S., et al., Effect of metal vapor vacuum arc Cr-implanted interlayers on the microstructure of CrN film on silicon. Thin Solid Films, 2003. 436(2): p. 238-243. 91.Vogli, E., et al., Influence of Ti/TiAlN-multilayer designs on their residual stresses and mechanical properties. Applied Surface Science, 2011. 257(20): p. 8550-8557. 92.G. C. A. M. Janssen , A.J.D., V. G. M. Sivel, W. R. Wang, Tensile stress in hard metal filmsd. Applied Physics Letters, 2003. 83: p. 16. 93.Tanaka, S., et al., Micro-blasting effect on fracture resistance of PVD-AlTiN coated cemented carbide cutting tools. Surface and Coatings Technology, 2016. 308: p. 337-340. 94.Skordaris, G., et al., Effect of PVD film's residual stresses on their mechanical properties, brittleness, adhesion and cutting performance of coated tools. CIRP Journal of Manufacturing Science and Technology, 2017. 18: p. 145-151. 95.Lu, Y.H., et al., Effects of B content and wear parameters on dry sliding wear behaviors of nanocomposite Ti–B–N thin films. Wear, 2007. 262(11-12): p. 1372-1379. 96.Lugscheider, E., et al., Structure and properties of PVD-coatings by means of impact tester. Surface and Coatings Technology, 1999. 116-119: p. 141-146. 97.Bouzakis, K.D., et al., Thin hard coatings fracture propagation during the impact test. Thin Solid Films, 2004. 460(1-2): p. 181-189. 98.Polcar, T. and A. Cavaleiro, High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings – Structure and oxidation. Materials Chemistry and Physics, 2011. 129(1-2): p. 195-201. 99.Zhu, L., et al., High temperature oxidation behavior of Ti0.5Al0.5N coating and Ti0.5Al0.4Si0.1N coating. Vacuum, 2012. 86(12): p. 1795-1799. 100.Lin, J., et al., A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses. Surface and Coatings Technology, 2008. 202(14): p. 3272-3283. 101.S. Veprˇek, S.R., and Li Shizhi, Superhard nanocrystalline composite materials: The TiN/Si3N4 system. Appl. Phys. Lett. , 1995. 66: p. 2640. 102.Chang, H., Mechanical Properties and Cutting Performance of Multilayered TiVN/TiSiN Hard Coatings. 2016. 103.Hsu, W.-Y., Preparation of TiO2 anatase type transparent conducting films 2011. 104.Chen, H.-W., et al., Oxidation resistance of nanocomposite CrAlSiN under long-time heat treatment. Surface and Coatings Technology, 2011. 206(7): p. 1571-1576. 105.He, L., L. Chen, and Y. Xu, Interfacial structure, mechanical properties and thermal stability of CrAlSiN/CrAlN multilayer coatings. Materials Characterization, 2017. 125: p. 1-6. 106.Joseph, M.C., et al., Characterisation and tribological evaluation of nitrogen-containing molybdenum–copper PVD metallic nanocomposite films. Surface and Coatings Technology, 2005. 190(2-3): p. 345-356. 107.Drnovšek, A., et al., Correlating high temperature mechanical and tribological properties of CrAlN and CrAlSiN hard coatings. Surface and Coatings Technology, 2019. 372: p. 361-368. 108.Gao, B., et al., Effect of deposition temperature on hydrophobic CrN/AlTiN nanolaminate composites deposited by Multi-Arc-Ion Plating. Journal of Alloys and Compounds, 2019. 797: p. 1-9. 109.Chen, W., et al., Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels. Applied Surface Science, 2015. 332: p. 525-532. 110.Geng, Z., et al., Tribological behavior of patterned TiAlN coatings at elevated temperatures. Surface and Coatings Technology, 2019. 364: p. 99-114. 111.Feng, Y.-p., et al., Thermal stability and oxidation behavior of AlTiN, AlCrN and AlCrSiWN coatings. International Journal of Refractory Metals and Hard Materials, 2014. 43: p. 241-249. 112.Chen, L., et al., Improved thermal stability and oxidation resistance of Al–Ti–N coating by Si addition. Thin Solid Films, 2014. 556: p. 369-375. 113.Endrino, J.L., et al., Oxidation tuning in AlCrN coatings. Surface and Coatings Technology, 2007. 201(8): p. 4505-4511.
|