參考文獻
1.Adams, B. M., Woodall, W. H. and Superville, C. R., “Discussion,” Technometrics, 36, 19-22 (1994).
2.Alwan, L. C. and Roberts, H. V. “ Time-series modeling for statistical process control,” Journal of Business and Economic Statistics, 6, 87-95 (1988).
3.Box, G.. E. P., Jenkins, G.. M. and MacGregor, J. F.“Some recent advance in forecasting and control, Part II,” Journal of the Royal Statistical Society,Ser.C,23, 158-179 (1974).
4.Chang, S. I., and Aw, C. A. “A neural fuzzy control chart for detection and classify process mean shifts,” International Journal of Production Research, 34, 2265-2278 (1996).
5.Cheng, C. S., “A multi-layer neural network model for detecting changes in the process mean,” Computers and Industrial Engineering, 28, 51-61 (1995).
6.Chiu, C. C., Chen, M. K. and Lee, K. M. “Shifts recognition in correlated process data using a neural network,” International Journal of Systems Science, 32, 137-143 (2001).
7.Cook, D. F., and Chiu, C. C. “Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters,” IIE Transactions, 30, 227-234 (1998).
8.Cook, D. F., Zobel, C. W. and Nottingam, Q. J. “Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters,” International Journal of Production Research, 39, 17, 3881-3887 (2001).
9.Duncan, A. J., Quality Control and Industrial Statistics, 5, Irwin Book Company, Illinois (1986).
10.Grant, E. L. and Leavenworth., R. S. Statistical Quility Control, McGraw-Hill Book Co., New York (1988).
11.Guo, Y. and Dooley, K. J. “Distinguishing between mean, variance and autocorrelation changes in statistical quality control,” International Journal of Production Research, 33, 497-510 (1995).
12.Harris, T. J., and Ross, W. H. “Statistical process control procedures for correlated observations,” The Canadian Journal of Chemical Engineering, 69, 48-57 (1991).
13.Hush, D. R., Salas, J. M. and Horne, B. G. “Error surfaces for multi-layer perceptrons,” IEEE Transactions on System, Man and Cybernetics, 22, 2 (1992).
14.Hush, D. R. and Horne, B. G. “Progress in supervised neural networks,” IEEE Signal Processing Magazine, January, 8-39 (1993).
15.Hwarng, H. B., and Hubele, N. F. “Back-propagation pattern recognizers for control chart: methodology and performance,” Computers and Industrial Engineering, 24, 219-235 (1993a).
16.Hwarng, H. B., and Hubele, N. F. “ control chart pattern identification through efficient off-line neural network training,” IIE Transactions, 25, 27-40 (1993b).
17.Hwarng, H. B., “Detecting process mean shift in the presence of autocorrelation: a neural-network based monitoring scheme,” International Journal of Production Research, 42, 573-595 (2004).
18.Johnson, R. A. and Bagshaw, M. “The effect of serial correlation on performance of CUSUM tests,” Technometrics, 16, 103-112 (1974).
19.Johnson, R. A. and Bagshaw, M. Continous univariate distribution, John Wiley&Sons, New York (1994).
20.Lin, W. W. and Adams, B. M. “Combined control charts for forecast-based monitoring schemes,” Journal of Quality Technology, 28, 289-301 (1996).
21.Lucas, J. M. and Crosier, R. B. “Fast intitial response for CUSUM quility-control schemes: give your CUSUM a head start,” Technometrics, 24, 199-205 (1982).
22.Lu, C. W. and Reynolds, M. R. “Control charts for monitoring the mean and variance of autocorrelated processes,” Journal of Quality Technology, 31, 259-274 (1999).
23.Lu, C. W. and Reynolds, M. R. “Cusum charts for monitoring an autocorrelated process,” Journal of Quality Technology, 33, 316-334 (2001).
24.Lucas, J. M., “Combined Shewhart-CUSUM quality control schemes,” Journal of Quality Technology, 14, 51-59 (1982).
25.Montgomery, D. C., Introduction to Statistical Quality Control, Wiley, New York (1991).
26.Montgomery, D. C., and Mastrangelo, C. M. “Some statistical process control methods for auto-correlated data,” Journal of Quality Technology, 23, 3, 179-193 (1991).
27.Page, E. S., “Continuous inspection schemes,” Biometrika, 41, 100-115 (1954).
28.Pugh, G. A., “Synthetic neural networks for process control,” Computers and Industrial Engineering, 17, 24-26 (1989).
29.Pugh, G. A., “A comparison of neural networks to SPC charts,” Computers and Industrial Engineering, 21, 253-255 (1991).
30.Roberts, S. W., “Control chart tests based on geometric moving average,” Technometrics, 1, 239-250(1959).
31.Vasilopous, A. V. and Stamboulis, A. P. “Modification of control chart limits in the presence of data correlation,” Journal of Quality Technology, 10, 1, 20-30 (1978).
32.Wang, T. Y. and Chen, L. H. “Mean shifts detection and classification in multivariate process: a neural-fuzzy approach” Journal of Intelligent Manufacturing, 13, 211-221 (2002).
33.Wardell, D. G., Moskowitz, H. and Plante, R. D. “Control charts in the presence of data correlation,” Management Science, 38, 1084-1105 (1992).
34.Wardell, D. G., Moskowitz, H. and Plante, R. D. “Run-length distributions of special-cause control charts for correlated processes,” Technometrics, 36, 3-7 (1994).
35.Wardell, D. G., Moskowitz, H. and Plante, R. D. “Run-length distributions of residual control charts for correlated processes,” Journal of Quality Technology, 26, 308-317 (1994).
36.Western Electric Company, Statistical Quality Control Handbook, Western Electric Co. Inc., Indianapolis, Indiana (1958).
37.Zhang, N. F., “Detection capability of residual control chart for stationary process data,” Journal of Applied Statistics, 24, 475-492 (1997).
38.Zhang, N. F., “A statistical control chart for stationary process data,” Technometrics, 40, 24-38 (1998).
39.吳聰宏,「類神經網路應用在品質管制中相關性製程數據之管制」,元智大學工業工程研究所碩士論文,1994。40.許玉潔,「一個新自相關性製程監控方法之研究」,交通大學統計研究所碩士論文,2001。41.鄭春生、鄭靜彥,「以類神經網路辨識製程個別值數據之平均值、變異數及相關性的變化」,品質學報,6,29-43 (1999)。42.萬維君,「應用類神經網路於製程平均值變化之偵測及參數之估計」,元智大學工業工程研究所碩士論文,2001。