[1]中華民國行政院, “智慧機械產業推動方案規劃”.
[2]Peter Zelinski, ” Cutting Costs with Cutting Tools: Instead of Life or Price, Look to Capability”, Related Suppliers: Sandvik Coromant Inc,Modern Machine Shop, 10/15/2003.
[3]S. Kurada, C. Bradley,” A review of machine vision sensors for tool condition monitoring”, Computer in Industry, 34 (1997), pp. 55-72.
[4]M. Castejon, E. Alegre, J. Barreiro, L.K. Hernandez,” On-line tool wear monitoring using geometric descriptors from digital images”, International Journal of Machine Tools and Manufacture, 47 (2007), pp. 1847-1853.
[5]馬政剛,“類神經網路誤差估計與學習速率之探討”, 逢甲大學-應用數學系碩士班, 2013.[6]Wen-Tsao Pan,” The Study On The Optimizing Predictability Of The Neural Networks: Case Study Of Finance Holding Stocks”, 遠東學報第二十四卷.
[7]Ming Tan, Gaohong He, Xiangcun Li, Yuanfa Liu, Chunxu Dong, Jinghai Feng,” Prediction of the effects of preparation conditions on pervaporation performances of polydimethylsiloxane(PDMS)/ceramic composite membranes by backpropagation neural network and genetic algorithm”,Procedia Computer Science, Volume 89, 22 March 2012, Pages 142-146
[8]Ming Tan, Gaohong He *, Fei Nie, Lingling Zhang, Liangping Hu,” Optimization of ultrafiltration membrane fabrication using backpropagation neural network and genetic algorithm”,Procedia Computer Science, Volume 45, Issue 1, January 2014, Pages 68-75.
[9]Han-Xiong Huang, Jiong-Cheng Li, Cheng-Long Xiao,” A proposed iteration optimization approach integrating backpropagation neural network with genetic algorithm”,Procedia Computer Science, Volume 45, Volume 42, Issue 1, January 2015, Pages 146-155.
[10]何佳祥,”應用基因演算法優化類神經網路於汙水廠興建成本預估之研究”, 國立雲林科技大學-環境與安全衛生工程系碩士班,2003.[11]W.Grzesik, P. Nieslony, W. Habrat, J. Sieniawski, P. Laskowski, “Investigation of tool wear in the turning of Inconel 718 superalloy in terms of process performance and productivity enhancement”, Procedia Computer Science, Volume 118, February 2018, Pages 337-346.
[12]MuhammadRizal, Jaharah A.Ghania, Mohd ZakiNuawia and Che Hassan Che Harona “Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system,” Procedia Computer Science, Volume 13, Issue 4, April 2013, Pages 1960-1968.
[13]T.Mikołajczyk, K.Nowicki, A.Bustillo, D.Yu Pimenov,” Predicting tool life in turning operations using neural networks and image processing” Procedia Computer Science, Volume 104, 1 May 2018, Pages 503-513.
[14]Dongdong Kong, Yongjie Chen, Ning Li,” Gaussian process regression for tool wear prediction” Procedia Computer Science, Volume 104, 1 May 2018, Pages 556-574.
[15]Samik Dutta, Surjya K.Pal, RanjanSen, “On-machine tool prediction of flank wear from machined surface images using texture analyses and support vector regression”, Procedia Computer Science, Volume 43, January 2016, Pages 34-42.
[16]I.P. Okokpujie, O.S. Ohunakin, C.A. Bolu, K.O. Okokpujie, “Experimental data-set for prediction of tool wear during turning of Al-1061 alloy by high speed steel cutting tools”, Procedia Computer Science, Volume 18, June 2018, Pages 1196-1203.
[17]勝傑工業股份有限公司, http://www.ecoca.com/tw_index.asp.
[18]葉怡成,類神經網路模式應用與實作,儒林圖書有限公司,1993年1月初版,2000年4月七版.
[19]范揚志,”應用類神經網路與基因演算法於射出成形製程參數最佳化之研究”, 中華大學-科技管理研究所,2006.
[20]晉鳳山,”改良式倒傳遞類神經網路之研究”,國立台中師範學院教育測驗統計所 ,2002.
[21]蘇裕翔,”結合類神經網路與遺傳演算法評估地震尖峰地表加速度之研究”,國立屏東科技大學-土木工程系,2014.
[22]萬絢, 雷祖強, 陳達祺, ” 以樹狀倒傳遞類神經網路於田埂判釋研究”, 航測及遙測學刊第十六卷第一期,2011.03.
[23]ISO, “Tool Life Testing with Single-Point Turning Tools,”ISO, 5th draft proposal, ISO/TC 29/ WG 22 (secretariat 37), 91 (1972).