|
[1] Fang, C.W., “Neural-Based Approaches for Improving the Accuracy of Decision Trees," June 2002. [2] Hastie, T.,Friedman, J. and Tibshirani, R.,“The element ofstatistical learning," Springer-Verlag, New York, 2001. [3] Berrym, M. and Linoff, G., “Data Mining Techniques: For Marketing Sale and Customer Support,"John Wiley & Sons, Inc., 1997. [4] Bragg, R., Rhodes, O. M. and Strassberg, D., “Newtork Security: the complete reference," McGraw-Hill companies, 2004. [5] Sherif, J.S. and Dearmond, T.G.,“Intrusion detection: systems and models," Proceedings Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for CollaborativeEnterprises, Vol.10, pp.115-133, June 2002. [6] Chan, A.P.F., Ng, W.W.Y., Yeung, D.S. and Tsang, C.C., “Refinement of rule-based intrusion detection system for denial of service attacks by support vector machine," Machine Learning and Cybernetics, Vol.7, pp.4252-4256, 2004. [7] Seleznyov, A. and Puuronen, S., “HIDSUR: a hybrid intrusion detection system based on real-time user recognition," Database and Expert Systems Applications, Vol.4, No.8, pp.41-45, September 2000. [8] Kim, S. and Kim, Y., “A fast multiple string pattern matching algorithm," In Proceedings of 17th AoM/IAoM Conference on Computer Science, August 1999. [9] Yan, Q. and Xie, W., “A Network IDS with low false positive rate," Evolutionary Computation, CEC ''02. Proceedings of the 2002 Congress on Vol. 2, pp. 1121–1126, May 2002. [10] Pan, Z.S., Lian, H., Hu, G.Y.and Ni, G.Q., “An integrated model of intrusion detection based on neural network and expert system,"ICTAI 05. 17th IEEE International Conference on pp. 2, November 2005. [11] Anderson, J.P., “Computer Security Threat Monitor and Survcllance," James P.Anderson CO,Fort Washington,April 1980. [12] Pan, Z.S., Chen,S.C., Hu, G.B. and Zhang, D.Q., “ Hybrid neural network and C4.5 for misuse detection," Machine Learning and Cybernetics, 2003 International Conference on Vol. 4, November 2003. 31 [13] Li, A.J., Liu, Y.H.and Luo, S.W., “On the solution of the XOR problem using the decision tree-based neural network," Machine Learning and Cybernetics, 2003 International Conference on Volume 2, November 2003. [14] Tung, K. Y.,Huang,I.C.,Chen,S.L. and Shih,C.T. “Mining the Generation Xers'' job attitudes by artificial neural network and decision tree-empirical evidence in Taiwan," Expert Systems with Applications, Vol. 29, No. 4,pp.783-94, November 2005. [15] KDD Cup 1999 Data, http://kdd.ics.uci.edu/databases/kddcup99/ kddcup99.html , 28 October 1999. [16] IBM Web site http://www.ibm.com. [17] 馬莉芋,資料探勘在網路入侵偵測上之研究,私立銘傳大學,碩士論文,2004. [18] 吳志聰,以特徵探勘提升入侵偵測系統效率,私立中原大學,碩士論文,2003. [19] 郭一聰,應用決策樹與類神經網路於應收帳款之呆帳預警模式研究,私立中原大學,碩士論文,2005. [20] 黃國華,應用類神經網路與決策樹於鉛酸蓄電池容量之估測,國立台北科技大學,碩士論文,2004. [21] 楊宗彥,運用類神經網路與決策樹技術預測股票報酬率,私立逢甲大學,碩士論文,2003. [22] 彭文正譯,Berry and Linoff 著,資料採礦:顧客關係管理暨電子行銷之應用,維科出版社,2002. [23] 樓玉玲,以資料發掘技術分析政大通識課程,國立政治大學,碩士論文,1997. [24] 曾新穆、李建億譯,資料探勘,東華書局,2003. [25] 文少宣 ,類神經網路與決策樹在顧客關係管理應用之比較,私立中華大學,碩士論文,2005. [26] 詹純源,以無向性貝氏網路為基礎之網頁入侵偵測系統,國立雲林科技大學,碩士論文,2002. [27] 張民杰,運用於提升入侵偵測效能的快速多重字串比對,國立臺灣大學,碩士論文,2003. [28] 李鎮原,應用類神經網路於異常入侵偵測之比較研究,國立國防管理學院,碩士論文,2004. [29] 林惠君,改善以規則為基礎的入侵偵測系統封包比對效能之研究,國立交通大學,碩士論文,2003. [30] 陳忠鴻,應用於入侵偵測之創新樣式搜尋演算法,國立成功大學,碩士論文,2003. 32 [31] 張繼方,模糊專家系統於網路入侵偵測之研究,私立中國文化大學,碩士論文,2003. [32] 林泰維,利用環境因素考量入侵偵測系統分析工具的選取方法,私立中原大學,碩士論文,2000. [33] 李駿偉、田筱榮、黃世昆,入侵偵測分析方法評估與比較 “Communications of the CCISA " Vol. 8, No.2 March 2002. [34] 陳彥銘、張嘉文,以人工免疫學建構高穩定度入侵偵測演算法,國立高雄第一科技大學,碩士論文,2006.
|