[1]廖家鉦,端銑刀自動化量測之研究,碩士論文,機械工程學系研究所,台灣,2011。[2]林祺勛,五軸工具磨床線上刀具幾何影像檢測系統開發,碩士論文,國立虎尾科技大學創意工程與精密科技研究所,台灣,2011。[3]蘇聰,端銑刀臨界磨耗之線上即時監控方法研究,碩士論文,中原大學機械工程研究所,台灣,2011。[4]Rejc, J., Kovačič, F., Trpin, A., Turk, I., Štrus, M., Rejc, D., Munih, M. (2011). The mechanical assembly dimensional measurements with the automated visual inspection system. Expert Systems with Applications, 38(8), 10665-10675.
[5]N.S.S. Mar, P.K.D.V. Yarlagadda, C. Fookes. (2011). Design and development of automatic visual inspection system for PCB manufacturing.School of Engineering Systems, Queensland University of Technology, George Street 2, Brisbane QLD 4001, Australia.
[6]陳正和、黃彥翔,機器視覺系統運用於刀片磨耗研究,綠色科技工程與應用研討會(GTEA),國立勤益科技大學機械工程系研究所,台灣,2013。
[7]Zhang, C., & Zhang, J. (2013). On-line tool wear measurement for ball-end milling cutter based on machine vision. Computers in Industry, 64(6), 708-719.
[8]Shanmugamani, R., Sadique, M., & Ramamoorthy, B. (2015). Detection and classification of surface defects of gun barrels using computer vision and machine learning. Measurement, 60, 222-230.
[9]Manish, R., Venkatesh, A., & Denis Ashok, S. (2018). Machine Vision Based Image Processing Techniques for Surface Finish and Defect Inspection in a Grinding Process. Materials Today: Proceedings, 5(5), 12792-12802.
[10]陳正益,端銑刀磨耗線上量測,碩士論文,國立中正大學工學院機械工程學系研究所,台灣,2018。[11]黃韻喬,端銑刀刃口影像檢測系統開發,碩士論文,國立虎尾科技大學機械與電腦輔助工程系碩士班,台灣,2018。[12]Matic, T., Aleksi, I., Hocenski, Z., & Kraus, D. (2018). Real-time biscuit tile image segmentation method based on edge detection. ISA Trans, 76, 246-254.
[13]Agic, A., Eynian, M., Ståhl, J. E., & Beno, T. (2019). Experimental analysis of cutting edge effects on vibrations in end milling. CIRP Journal of Manufacturing Science and Technology, 24, 66-74.
[14]Alhadeff, L. L., Marshall, M. B., Curtis, D. T., & Slatter, T. (2019). Protocol for tool wear measurement in micro-milling. Wear, 420-421, 54-67.
[15]Dai, Y., & Zhu, K. (2018). A machine vision system for micro-milling tool condition monitoring. Precision Engineering, 52, 183-191.
[16]Aimin, Y., Shanshan, L., Honglei, L., & Donghao, J. (2018). Edge extraction of mineralogical phase based on fractal theory. Chaos, Solitons & Fractals, 117, 215-221.
[17]Manish, R., Venkatesh, A., & Denis Ashok, S. (2018). Machine Vision Based Image Processing Techniques for Surface Finish and Defect Inspection in a Grinding Process. Materials Today: Proceedings, 5(5), 12792-12802.
[18]Mendikute, A., Leizea, I., Yagüe-Fabra, J. A., & Zatarain, M. (2018). Self-calibration technique for on-machine spindle-mounted vision systems. Measurement, 113, 71-81.
[19]Sun, Z., To, S., Zhang, S., & Zhang, G. (2018). Theoretical and experimental investigation into non-uniformity of surface generation in micro-milling. International Journal of Mechanical Sciences, 140, 313-324.
[20]Li, Z., Sato, R., Shirase, K., Ihara, Y., & Milutinovic, D. S. (2019). Sensitivity analysis of relationship between error motions and machined shape errors in five-axis machining center - Peripheral milling using square-end mill as test case. Precision Engineering, 60, 28-41.
[21]Zhou, Y., Wang, S., Wang, L., Tang, J., & Chen, Z. C. (2019). CNC milling of face gears with a novel geometric analysis. Mechanism and Machine Theory, 139, 46-65.
[22]Biondani, F. G., & Bissacco, G. (2019). Effect of cutting edge micro geometry on surface generation in ball end milling. CIRP Annals, 68(1), 571-574.
[23]Dai, F., Geng, J., Ren, X., Huang, S., Zhou, J., Hua, X., & Chen, X. (2019). Surface roughness control of LY2 aluminum alloy milled surface subjected to laser shock wave planishing processing. Applied Surface Science, 486, 121-127.
[24]Tsai, D.-M., & Rivera Molina, D. E. (2019). Morphology-based defect detection in machined surfaces with circular tool-mark patterns. Measurement, 134, 209-217.
[25]Wang, J., Fu, P., & Gao, R. X. (2019). Machine vision intelligence for product defect inspection based on deep learning and Hough transform. Journal of Manufacturing Systems, 51, 52-60.
[26]Huynh, T.-C., Park, J.-H., Jung, H.-J., & Kim, J.-T. (2019). Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing. Automation in Construction, 105.
[27]Verl, A., Valente, A., Melkote, S., Brecher, C., Ozturk, E., & Tunc, L. T. (2019). Robots in machining. CIRP Annals, 68(2), 799-822.
[28]Borysenko, D., Karpuschewski, B., Welzel, F., Kundrák, J., & Felhő, C. (2019). Influence of cutting ratio and tool macro geometry on process characteristics and workpiece conditions in face milling. CIRP Journal of Manufacturing Science and Technology, 24, 1-5.
[29]Ardunio, https://www.arduino.cc/
[30]MEAN WELL, https://www.meanwell.com
[31]宸軒科技,https://www.chtco.com.tw/
[32]宇創視覺科技, http://www.viswell.com.tw/products/index3.php?id=130
[33]Basler,https://www.baslerweb.com
[34]Kowa,https://lenses.kowa-usa.com/
[35]Vital Vsion,htps://vitalvisiontechnology.com/
[36]丸榮, http://www.acrow-tools.com.tw/
[37]Halcon, https://www.mvtec.com/products/halcon
[38]端銑刀各部角度名稱, http://ntm.com.tw/technique.php#4
[39]Mitutoyo, https://www.mitutoyo.com.tw/product/category.php?id=12
[40]表面粗糙度值對照表, http://www.shenhay.com.tw/channel.asp?id=136
[41]刀具設定儀, http://www.keejaan.com/tp-3040r.html
[42]刀具影像量測儀,http://www.keejaan.com/kj-340a.html