[1] 朱光馨,聚熱式太陽能發電系統與應用,新新季刊,42,(2014),21-34。
[2] S. Kalogirou, Solar Energy Collectors, Solar Energy Engineering 2nd Edition (2014) 125-220.
[3] L.H. Shaffer, Wavelength-dependent(selective)process for the utilization of solar energy, Solar Energy 2 (1958) 21-26.
[4] G.A. Niklasson, C.G. Granqvist,Surfaces for selective absorption of solar energy : an annotated bibliography 1955-1981, J. Mate.Sci. 18 (1983) 3475-3534.
[5] Q. Zhang, D. R.Mills, Very lowemittance solar selective surfaces using new film structures, J. Appl.Phys. 72 (1992) 3013-301.
[6] B.O. Seraphin, Spectrally selective surfaces and their impact on photothermal solar energy conversion, Topics in Appl.Phys. 31 (2005) 5-55.
[7] KeZhang, LeiHao, Miao Du, Jing Mi, Ji-NingWang, Jian-ping Meng, A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings, Renewable and Sustainable Energy Reviews 67 (2017) 1282–1299.
[8] A. Thobor-Keck, F. Lapostolle, A.S. Dehlinger, D. Pilloud, J.F. Pierson, C. Coddet, Influence of silicon addition on the oxidation resistance of CrN coatings, Surface & Coatings Technology 200 (2005) 264 – 268.
[9] Audrey Soum-Glaude, Alex Le Gal, Maxime Bichotte, Christophe Escape, Laurent Dubost, Optical characterization of TiAlNx/TiAlNy/Al2O3 tandem solar selective absorber coatings, Solar Energy Materials and Solar Cells 170 (2017) 254–262.
[10] N. Selvakumar, Harish C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications, Solar Energy Materials & Solar Cells 98 (2012) 1–23.
[11] J. Feng, S. Zhang, X. Liu, H. Yu, H. Ding, Y. Tian, J. Ouyang, Solar selective absorbing coatings Ti/TiSiN/SiN prepared on stainless steel substrates, Vacuum 121 (2015) 135-141.
[12] C.E. Kennedy, Review of Mid-to High-Temperature Solar Selective Absorber Materials, National Renewable Energy Laboratory (2002) 1-52.
[13] A. Schuler, C. Roecker, J. Boudaden, P. Oelhafen, J.-L. Scartezzini, Potential of quarterwave interference stacks for colored thermal solar collectors, Solar Energy 79 (2005) 122–130.
[14] T.N. Anderson, M. Duke, J.K. Carson, The effect of colour on the thermal performance of building integrated solar collectors, Solar Energy Materials & Solar Cells 94 (2010) 350–354.
[15] A. Schuler, J. Boudaden, P. Oelhafen, E. De Chambrier, C. Roecker, J.-L. Scartezzini, Thin film multilayer design types for colored glazedthermal solar collectors, Solar Energy Materials & Solar Cells 89 (2005) 219–231.
[16] 熊德華,陳煒,李宏,太陽能光熱轉換選擇性吸收塗層研究進展,科技報導,32,(2014),50-58。
[17] R. Bayon, G.S. Vicente, A. Morales, Durability tests and up-scaling of selective absorbers based on copper-manganese oxide deposited by dip-coating, Solar Energy Mater. & Solar Cells 94 (2010) 998-1004.
[18] J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, John Wiley&Sons Fourth Edition (2013) 173-191.
[19] K. Gelin, Preparation and Characterization of Sputter Deposited Spectrally Selective Solar Absorber, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Sic and Techonlogy 958 (2004) 1-72.
[20] M. Kussmaul, M.J. Mirtich, A. Curren, Ion beam treatment of potential space materials as the NASA Lewis Research Center, Surface and Coatings Technology 51 (1992) 299-306.
[21] M. Koltun, G. Gukhman, A. Gavrilina, Stable selective coating black nickel for solar collector surfaces, Solar Energy Mater.and Solar Cells 33 (1994) 41-44.
[22] J.R. Christman, Fundamentals of Solid State Physics, John Wiley&Sons Chapter9 (1988) 260-267.
[23] P. Bermel, J. Lee, J.D. Joannopoulos, I. Celanovic, M. Soljaice, Selective Solar Absorbers, Annual Review of Heat Transfer 15 (2012) 215-254.
[24] Bo Chen, Dongfang Yang, Paul A. Charpentier, Suwas Nikumb, Optical and structural properties of pulsed laser deposited Ti:Al2O3 thin films, Solar Energy Materials & Solar Cells 92 (2008) 1025– 1029.
[25] S.K. Kumar, S. Murugesan, S. Suresh, S.P. Raj, Nanostructured CuO Thin Film Prepared through Sputtering for Solar Selective Absorbers, J. of Solar Energy 2013 (2013) 1-6.
[26] 方文玉,Cr-Al2O3太陽能選擇性吸收塗層的研究,江漢大學學報,40,(2012) ,50-53。
[27] T. Eisenhammer, A. Haugeneder, A. Mahr, High-temperature optical properties and stability of selective absorbers based on quasicrystalline AlCuFe, Solar Energy Mater.and Solar Cells 54 (1998) 379-386.
[28] Andreas Kafizas, Claire J. Carmalt, Ivan P. Parkin, CVD and precursor chemistry of transition metal nitrides, Coordination Chemistry Reviews 257 (2013) 2073– 2119.
[29] Yang Li, Chongjia Lin, Dan Zhou, Yiming An, Dezhao Li, Cheng Chi, He Huang, Shihe Yang, Chi Yan Tso, Christopher Y.H. Chao, Baoling Huang, Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers, Nano Energy 64 (2019) 103947.
[30] Chaoquan Hu, Kaiyu Guo, Yuankai Li, Zhiqing Gu, Jingkai Quan, Sam Zhang, Weitao Zheng, Optical coatings of durability based on transition metal nitrides, Thin Solid Films.
[31] A. AL-Rjoub, L. Rebouta, P. Costa, N.F. Cunha, S. Lanceros-Mendez, N.P. Barradas, E. Alves, The effect of increasing Si content in the absorber layers (CrAlSiNx/CrAlSiOyNx) of solar selective absorbers upon their selectivity and thermal stability, Applied Surface Science 481 (2019) 1096–1102.
[32] Liqiong An, Syed Talat Ali, Thomas Sondergaard, Jeppe Norgaard , Yao-Chung Tsao, Kjeld Pedersen, Optimization of TiAlN/TiAlON/Si3N4 solar absorber coatings, Solar Energy 118 (2015) 410–418.
[33] L. Rebouta1, P. Capela1, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow , E.Alves, Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications, Solar Energy Materials & Solar Cells 105 (2012) 202–20.
[34] L. Rebouta, A. Pitães, M. Andritschky, P. Capela, M.F. Cerqueira, A. Matilainen, K. Pischow, Optical characterization of TiAlN/TiAlON/SiO2 absorber for solar selective applications, Surface & Coatings Technology 211 (2012) 41–44.
[35] S. Mertin, V. Hody-Le Caër, P. Oelhafen, A. Schüler, Reactively Sputtered Nano-Structured Multilayer Coatings on Architectural Glazing for Active Solar Energy Facades, Energy and Buildings 68 (2014) 764.
[36] J. Boudaden, P. Oelhafen, A. Schuler, C. Roecker, J.-L. Scartezzini, Multilayered Al2O3/SiO2 and TiO2/SiO2 coatings for glazed colored solar thermal collectors, Solar Energy Materials & Solar Cells 89 (2005) 209–218.
[37] Ruihua Yang, Jinyang Liu, Limei Lin, Yan Qu, Weifeng Zheng, Fachun Lai, Optical properties and thermal stability of colored solar selective absorbing coatings with double-layer antireflection coatings, Solar Energy 125 (2016) 453–459.
[38] Yangwei Wu, Weifeng Zheng, Limei Lin, Yan Qu, Fachun Lai, Colored solar selective absorbing coatings with metal Ti and dielectric AlN multilayer structure, Solar EnergyMaterials&SolarCells115(2013)145–150.
[39] M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, 1994.
[40] M. Konuma, Film Deposition by Plasma Techniques, Springer-Verlag, 1992.
[41] 白木靖寬/吉田貞史,薄膜工程學,全華圖書股份有限公司,第三版,(2003) ,1.1-2.44。
[42] 張永宏,氧化鋁薄膜於太陽能選擇性吸收膜之研究,龍華科技大學機械研究所碩士論文,(2005),1-65。[43] 張勁燕,半導體製程設備,武南圖書出版有限公司,(2001),359-406。
[44] 李明逵,矽元件與積體電路製程,全華圖書股份有限公司。
[45] L. Liljeholm, Reactive Sputter Deposistion of Functional Thin Films, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Sci.and Technology 945 (2012) 1-52.
[46] 杜怡旭,反應濺鍍純二氧化鈦與氮摻雜二氧化鈦之薄膜特性研究,南台科技大學電機工程研究所碩士論文,(2007),1-77。
[47] 余俊毅,非極性氧化鋅磊晶在鎵酸鋰基板之成長機構研究,國立中山大學材料與光電科學學系碩士論文,(2010),1-81。[48] D. Jiles, “Introduction to the Electronic Properties of Materials”, Chapman & Hall, (1994).
[49] B.E. Sernelious, K.F. Berggren, Z.C. Jin, I. Hambreg and C.G. Granqvist, “Band - gap tailoring of Zno by means of heavy AL doping”, Physical Review B. 37(17) (1998) 10244 - 10248.
[50] Physics Dept., Faculty of Science at Qena, South Valley Univ “Effect of Composition and Annealing on Some of the Optical Parameters of Gex Te100-x Thin Films”, Egypt. J. Sol., Vol. (23), No. (2), (2000).
[51] CAO Mingjie, ZHAO Ming, ZHUANG Daming, GUO Li, OUYANG Liangqi, SUN Rujun, ZHAN Shilu, “Optical and Electronic Properties of Nb Doped Indium-zinc Oxide Films Grown by Magnetron Sputtering”, Tsinghua University, Beijing 100084, China.
[52] D.B. Lee, T.D. Nguysen, S.K. Kim, Air-oxidation of Nano-multilayered CrSiN Thin Films between 800 and 1000℃, Surface & Coatings Technology 203 (2009) 1199-1204.
[53] J. Lin, B. Wang, Y. Ou, W.D. Sproul, I. Dahan, J.J. Moore, Stucture and Properties of CrSiN Nanocomposite Coating deposited by Hybrid Modulated Pulsed Power and Pulsed DC Magnetron Sputterung,Surface & Coating Technology 216 (2013) 251-258.
[54] Mingdong Zhu, Fei Li, Guangxue Zhou, Xiao Jin, Xiaofeng Wang, Langping Wang, Falun Song, Microstructures and electrical properties of nanostructured Cr2O3 thin films deposited by dual-target reactive high-power impulse magnetron sputtering, Vacuum 164 (2019) 293–299.
[55] Sang-Yong Jeong, Jin-Bok Lee, Hyunseok Na, Tae-Yeon Seong, Epitaxial growth of Cr2O3 thin film on Al2O3 (0001) substrate by radio frequency magnetron sputtering combined with rapid-thermal annealing, Thin Solid Films, 518 (2010) 4813–4816.
[56] Yin Gao, Harald Leiste, Michael Stueber, SvenUlrich, The processofgrowing Cr2O3 thin films on α-Al2O3 substratesatlow temperature by r.f. magnetron sputtering, Journal of Crystal Growth, 457 (2017) 158–163.
[57] Kęstutis Juškevičius, Martynas Audronis, Andrius Subačius, Simonas Kičas, Tomas Tolenis, Rytis Buzelis, Ramutis Drazdys, Mindaugas Gaspariūnas, Vitalij Kovalevskij, Allan Matthews, Adrian Leyland, Fabrication of Nb2O5/SiO2 mixed oxides by reactive magnetron co-sputtering, Thin Solid Films 589 (2015) 95–104.
[58] S. Maidul Haque, K. Divakar Rao, S. Tripathi, Rajnarayan De, D.D. Shinde, J.S. Misal, C. Prathap, Mohit Kumar, T. Som, U. Deshpande, N.K. Sahoo, Glancing angle deposition of SiO2 thin films using a novel collimated magnetron sputtering technique, Surface & Coatings Technology 319 (2017) 61–69.
[59] Wei Li, Kangpei Zheng, Ping Liu, Pinwen Zhu, Ke Zhang, Fengcang Ma, Xinkuan Liu, Xiaohong Chen, Daihua He, Microstructure and superhardness effect of CrAlN/SiO2 nanomultilayered Microstructure and superhardness effect of CrAlN/SiO2 nanomultilayered film synthesized by reactive magnetron sputtering, Materials Characterization 118 (2016) 79–84.
[60] Blaž Sovdat, Miha Kadunc, Matej Batič, Grega Milčinski, Natural color representation of Sentinel-2 data, Remote Sensing of Environment 225 (2019) 392–402.
[61] Florian Schiller, Matteo Valsecchi, Karl R. Gegenfurtner, An evaluation of different measures of color saturation, Vision Research 151 (2018) 117–134.
[62] E. Martinez, R. Sanjines, O. Banakh, F. Levy, Electrical, optical and mechanical properties of sputtered CrNy and Cr1-xSixN1.02 thin films Thin Solid Films 447-448 (2004) 332-336.
[63] M. Benkahoul, P. Robin, S.C. Gujrathi, L. Martinu, J.E. Klemberg-Sapieha, Microstructure and mechanical properties of Cr-Si-N coatings prepared by pulsed reactive dual magnetron sputtering, Surface and Coatings Technology 202 (2008) 3975-3980.
[64] E. Clementi, D.L. Raimondi, W.P. Reinhardt, Table of Atomic Radii, J. Chem, Phys 38 (1963) 2686.
[65] O. Debieu, R.P. Nalini, J. Cardin, X. Portier, J. Perriere, F. Gourbilleau, Structural and Optical characterization of pure Si-rich nitride thin films, Nanoscale Reasearch Letters (2013) 1-13.
[66] M. Kotilainen, K. Mizohata, M. Honkanen, P. Vuoristo, Influence of microstructure on temperature-inducedageing mechanisms of different solar absorber coatings, Solar Energy Materials & Solar Cells 120 (2014) 462–472.
[67] M. Kotilainen, M. Honkanen, K. Mizohata, P. Vuoristo, Influence of temperature-induced copper diffusion on degradation of selective chromium oxy-nitride solar absorber coatings, Solar Energy Materials & Solar Cells 145 (2016) 323–332.
[68] A. AL-Rjoub, L. Rebouta, P. Costa, L.G. Vieira, T.M.R. Miranda, N.P. Barradasd, E. Alves, CrAlSiN barrier layer to improve the thermal stability of W/CrAlSiNx/CrAlSiOyNx/SiAlOx solar thermal absorber, Solar Energy Materials and Solar Cells 191 (2019) 235–242.