[1] M.Gratzel , “Photoelectrochemical cells,” Nat. (London, U. K.), vol. 414, no. 6861,
pp. 338–344, 2001.
[2] M.Okuya, K.Nakade, D.Osa, T.Nakano, G. R.Asoka Kumara, and S.Kaneko,
“Fabrication of dye-sensitized solar cells by spray pyrolysis deposition (SPD) technique,” J. Photochem. Photobiol. A Chem., vol. 164, no. 1–3, pp. 167–172, 2004.
[3] M.Quintana, T.Edvinsson, A.Hagfeldt, and G.Boschloo, “Comparison of dye-sensitized
ZnO and TiO2 solar cells: Studies of charge transport and carrier lifetime,” J. Phys. Chem. C, vol. 111, no. 2, pp. 1035–1041, 2007.
[4] M.Grattzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorganic
Chemistry, vol. 44, no. 20. pp. 6841–6851, 2005.
[5] T.Dittrich, E. A.Lebedev, and J.Weidmann, “Electron Drift Mobility in Porous TiO2
(Anatase),” Phys. Status Solidi, vol. 165, no. 2, pp. R5–R6, 1998.
[6] J. I.Martín, J.Nogués, K.Liu, J. L.Vicent, and I. K.Schuller, “Ordered magnetic
nanostructures: Fabrication and properties,” Journal of Magnetism and Magnetic Materials, vol. 256, no. 1–3, pp. 449–501, 2003.
[7] Q.Yan, F.Liu, L.Wang, J. Y.Lee, and X. S.Zhao, “Drilling nanoholes in colloidal spheres
by selective etching,” J. Mater. Chem., vol. 16, no. 22, pp. 2132, 2006.
[8] A.Winkleman, B. D.Gates, L. S.McCarty, and G. M.Whitesides, “Directed self-assembly
of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater., vol. 17, no. 12, pp. 1507–1511, 2005.
[9] R. C.Denomme, K.Iyer, M.Kreder, B.Smith, and P. M.Nieva, “Nanoparticle fabrication
by geometrically confined nanosphere lithography,” J. Micro/Nanolithography, MEMS,
MOEMS, vol. 12, no. 3, pp. 31106, 2013.
[10] M.Law, L. E.Greene, J. C.Johnson, R.Saykally, and P.Yang, “Nanowire dye-sensitized
solar cells,” Nat. Mater., vol. 4, no. 6, pp. 455–459, 2005.
[11] Y.Chen et al., “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire:
Growth and characterization,” J. Appl. Phys., vol. 84, no. 7, p. 3912, 1998.
[12] H.Guo, J.Zhou, and Z.Lin, “ZnO nanorod light-emitting diodes fabricated by
electrochemical approaches,” Electrochem. commun., vol. 10, no. 1, pp. 146–150, 2008.
[13] Z.Li, X.Huang, J.Liu, Y.Li, and G.Li, “Morphology control and transition of ZnO
nanorod arrays by a simple hydrothermal method,” Mater. Lett., vol. 62, no. 10–11, pp. 1503– 1506, 2008.
[14] 劉芳佐,2009,“以水熱法製備之氧化鋅奈米桿之氣體感測特性",國立台北科技大
學化學工程系碩士學位論文。
[15] L.Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous
solutions,” Adv. Mater., vol. 15, no. 5, pp. 464–466, 2003.
[16] L.Vayssieres, K.Keis, A.Hagfeldt, and S. E.Lindquist, “Three-dimensional array of
highly oriented crystalline ZnO microtubes,” Chem. Mater., vol. 13, no. 12, pp. 4395–4398, 2001.
[17] L.Vayssieres, K.Keis, S.-E.Lindquist, and A.Hagfeldt, “Purpose-Built Anisotropic Metal
Oxide Material : 3D Highly Oriented Microrod Array of ZnO,” J. Phys. Chem. B, vol. 105, no.17, pp. 3350–3352, 2001.
[18] Q.Li, V.Kumar, Y.Li, H.Zhang, T. J.Marks, and R. P. H.Chang, “Fabrication of ZnO
nanorods and nanotubes in aqueous solutions,” Chem. Mater., vol. 17, no. 5, pp. 1001–1006, 2005.
[19] K.Govender, D. S.Boyle, P. B.Kenway, and P.O’Brien, “Understanding the factors that
govern the deposition and morphology of thin films of ZnO from aqueous solution,” J. Mater. Chem., vol. 14, no. 16, pp. 2575–2591, 2004.
[20] 蔡瑞文,2006,“染料敏化二氧化鈦電極特性之研究",大同大學材料工程所碩士學位論文。
[21] Y. N. T. A.H. Tsubomura, M. Matsumura, “Dye sensitised ZnO: aqueous electrolyte:
platinum photocell,” Nature, vol. 261, pp. 402, 1976.
[22] B.O’Regan and M.Grätzel, “A low-cost, high-efficiency solar cell based on
dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991.
[23] M.K.Nazeeruddin et al., “Conversion of light to electricity by cis-X2bis
(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-,CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc., vol. 115, no. 14, pp. 6382–6390, 1993.
[24] M. K.Nazeeruddin et al., “Combined experimental and DFT-TDDFT computational
study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc., vol. 127, no. 48, pp. 16835–16847, 2005.
[25] A.Yella et al.,“Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox
Electrolyte Exceed 12 Percent Efficiency,” Science (80-. )., vol. 334, no. 6056, pp. 629–634, 2011.
[26] A.Mishra, M. K. R.Fisher, and P.Bauerle, “Metal-Free organic dyes for dye-Sensitized
solar cells: From structure: Property relationships to design rules,” Angewandte Chemie -
International Edition, vol. 48, no. 14. pp. 2474–2499, 2009.
[27] T.Horiuchi, H.Miura, K.Sumioka, and S.Uchida, “High efficiency of dye-sensitized solar
cells based on metal-free indoline dyes,” J. Am. Chem. Soc., vol. 126, no. 39, pp. 12218–
12219, 2004.
[28] K.Fredin, “Studies of Charge Transport Processes in Dye-Sensitized Solar Cells,” 2007.
[29] G.Franco, J.Gehring, L. M.Peter, E. a.Ponomarev, and I.Uhlendorf, “Frequency-Resolved
Optical Detection of Photoinjected Electrons in Dye-Sensitized Nanocrystalline Photovoltaic Cells,” J. Phys. Chem. B, vol. 103, no. 4, pp. 692–698, 1999.
[30] B. a.Gregg, F.Pichot, S.Ferrere, and C. L.Fields, “Interfacial Recombination Processes in
Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces, ” J. Phys. Chem. B, vol.105, no. 7, pp. 1422–1429, 2001.
[31] P.Wang, R.Humphry-Baker, J. E.Moser, S. M.Zakeeruddin, and M.Gratzel, “Amphiphilic
polypyridyl ruthenium complexes with substituted 2,2 ’-dipyridylamine ligands for
nanocrystalline dye-sensitized solar cells,” Chem. Mater., vol. 16, no. 17, pp. 3246–3251, 2004.
[32] G. R. A.Kumara, S.Kaneko, M.Okuya, and K.Tennakone, “Fabrication of dye-sensitized
solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor,” Langmuir, vol. 18, no. 26, pp. 10493–10495, 2002.
[33] A.Noda, K.Hayamizu, and M.Watanabe, “Pulsed-gradient spin-echo 1H and 19F NMR
ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate
room-temperature ionic liquids,” J. Phys. Chem. B, vol. 105, no. 20, pp. 4603–4610, 2001.
[34] 張智信,2008,"陽極處理法製備二氧化鈦奈米管狀結構並應用於染料敏化太陽能
電池之研究",國立台北科技大學材料科學與工程研究所碩士學位論文。
[35] S.Ho, C.Su, and C.Cheng, “Preparation , Characterization and Application of Titania
Nanotube Arrays in Dye-Sensitized Solar,” pp. 15–16.
[36] A.Hauch and A.Georg, “Diffusion in the electrolyte and charge-transfer reaction at the
platinum electrode in dye-sensitized solar cells,” Electrochim. Acta, vol. 46, no. 22, pp. 3457–3466, 2001.