[1]台灣區工具機暨零組件工業同業工會,2019,https://www.tmba.org.tw/message_show.php?cid=1448863855&pid=1444896759.
[2]N. I. Corporation., 2019, General Purpose Triaxial Accelerometers, http://sine.ni.com/nips/cds/view/p/lang/zht/nid/213178.
[3]K. I. Corporation., 2007, Acoustic Emission Senso, https://www.processcontrols.com/intertechnology/Kistler/pdfs/Accelerometer_Model_8152B.pdf.
[4]K. Group., 2019, Multi-Component Dynamometer up to 60 kN, https://www.kistler.com/en/product/type-9255c/.
[5]T. El-Wardany, D. Gao, M. Elbestawi, 1996, "Tool condition monitoring in drilling using vibration signature analysis", International Journal of Machine Tools and Manufacture, vol. 36, no. 6, pp. 687-711.
[6]R. Kuo, and P. Cohen, 1998, "Intelligent tool wear estimation system through artificial neural networks and fuzzy modeling", Artificial Intelligence in Engineering, vol. 12, no. 3, pp. 229-242.
[7]C. Chungchoo, and D. Saini, 2002, "On-line tool wear estimation in CNC turning operations using fuzzy neural network model", International Journal of Machine Tools and Manufacture, vol. 42, no. 1, pp. 29-40.
[8]J. Dong et al., 2006, "Bayesian-inference-based neural networks for tool wear estimation", The International Journal of Advanced Manufacturing Technology, vol. 30, no. 9-10, pp. 797-807.
[9]N. Ghosh et al., 2007, "Estimation of tool wear during CNC milling using neural network-based sensor fusion", Mechanical Systems and Signal Processing, vol. 21, no. 1, pp. 466-479.
[10]C. Aliustaoglu, H. M. Ertunc, and H. Ocak, 2009, "Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system", Mechanical Systems and Signal Processing, vol. 23, no. 2, pp. 539-546.
[11]M. Malekian, S. S. Park, and M. B. Jun, 2009, "Tool wear monitoring of micro-milling operations", Journal of Materials Processing Technology, vol. 209, no. 10, pp. 4903-4914.
[12]康晶, 冯长建, 胡红英, 2009, "刀具磨损监测及破损模式的识别", 振動. 測試與診斷, vol. 29, no. 1, pp. 5-9.
[13]馬成傑,2007,”監督式學習類神經網路於銑削斷刀即時監控之研究”,中原大學工業與系統工程研究所碩士論文。[14]黃耀賢,2010,”主軸振動與聲射訊號於微銑刀具磨耗監測之應用研究”,國立中興大學機械工程學系所碩士論文。 [15]M.-S. Noh and D. S. Hong, 2011, "Implementation of remote monitoring system for prediction of tool wear and failure using ART2", Journal of Central South University of Technology, vol. 18, no. 1, pp. 177-183.
[16]許育瑋,2012,”應用主軸振動與聲射訊號於鑽頭狀態偵測之研究”,國立中興大學機械工程學系所碩士論文。[17]黃啟榮,2012,”切削路徑對應用主軸聲射與振動訊號之微銑削刀具磨耗偵測系統之影響分析”,國立中興大學機械工程學系所碩士論文。[18]M. Rizal et al., 2013, "Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system", Applied Soft Computing, vol. 13, no. 4, pp. 1960-1968.
[19]林伯恂,2014,”切削條件改變下之刀具狀態監測”,國立臺灣大學機械工程學研究所碩士論文。[20]姚皇任,2014,”以多感測器及類神經網路監測車削中刀具磨耗程度”,國立高雄第一科技大學機械與自動化工程研究所碩士論文。[21]M. Ahmad et al., 2015, "Development of tool wear machining monitoring using novel statistical analysis method, I-kaz™", Procedia Engineering, vol. 101, pp. 355-362.
[22]R. Blödorn et al., 2015, "Study of the drilling process used in the Hole-Drilling Method through thrust force measurement and tool wear analysis", 23rd ABCM International Congress of Mechanical Engineering, pp. 1-8.
[23]S. Karam et al., 2016, "Online prediction of cutting tool life in turning via cognitive decision making", Procedia CIRP, vol. 41, pp. 927-932.
[24]朱永猛, 吴军, 吴超勇, 苏永衡, 2016, "基于自适应神经模糊推理系统的刀具磨损监测", 兵器装备工程学报, vol. 9, pp. 115-118.
[25]黃門,2016,”以電流及振動訊號監測微銑削刀具磨耗之研究”,國立臺灣大學機械工程學研究所碩士論文。[26]R. Corne et al., 2017, "Study of spindle power data with neural network for predicting real-time tool wear/breakage during inconel drilling", Journal of Manufacturing Systems, vol. 43, pp. 287-295.
[27]J. Zhang et al., 2017, "Particle learning in online tool wear diagnosis and prognosis", Journal of Manufacturing Processes, vol. 28, pp. 457-463.
[28]陈永鹏, 曹华军, 杨潇, 2017, "高速干切滚齿工艺滚刀切削刃载荷分布特性研究", 机械工程学报, vol. 53, no. 15, pp. 181-187.
[29]梁宸瑜,2017,”SOM類神經網路濾波器於鎳基材料切削刀具磨耗監測系統之設計應用”,國立中興大學機械工程學系所碩士論文。.[30]B. Jose et al., 2018, "Online Monitoring of Tool Wear and Surface Roughness by using Acoustic and Force Sensors", Materials Today: Proceedings, vol. 5, no. 2, pp. 8299-8306.
[31]鄭力維,2018,”工具機等切削力控制與刀具磨耗關係之探討”,國立臺灣大學機械工程學研究所碩士論文。[32]林鴻熊,2009,”端銑刀銑削SKD11硬鋼之刀具磨耗研究”,華梵大學機電工程學系博碩專班碩士論文。[33]T.-S. Lan, 2010, "Tool wear optimization for general CNC turning using fuzzy deduction", Engineering, vol. 2, no. 12, p. 1019.
[34]楊忠祥,2012,”S50C 中碳鋼精銑削刀具壽命之研究”,國立中興大學機械工程學系所碩士論文。[35]O. Geramifard et al., 2014, "Multimodal hidden Markov model-based approach for tool wear monitoring", IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2900-2911.
[36]潘建新, 潘祎, 2014, "刀具磨损与切削用量关联度应用与试验研究", 机械研究与应用, vol. 27, no. 5, pp. 102-104.
[37]C. Drouillet et al., 2016, "Tool life predictions in milling using spindle power with the neural network technique," Journal of Manufacturing Processes, vol. 22, pp. 161-168.
[38]K. Patra et al., 2017, "Artificial neural network based tool condition monitoring in micro mechanical peck drilling using thrust force signals", Precision Engineering, vol. 48, pp. 279-291.
[39]T. Mikołajczyk et al., 2018, "Predicting tool life in turning operations using neural networks and image processing", Mechanical systems and signal processing, vol. 104, pp. 503-513.
[40]高健瑋,2018,”車削製程刀具磨耗智慧預測系統之研發”,國立高雄應用科技大學機械工程系碩士論文。[41]國立虎尾科技大學-智能機械與智慧製造研究中心,2019,Smart Machine Engine產品型錄。
[42]P. Technology, 2019, OPC UA Gateway to the IIoT, https://www.prosoft-technology.com/Landing-Pages/OPC-UA
[43]程泰機械股份有限公司,2019,GLS-1500 系列規格,http://www.goodwaycnc.com/exhtml_goodway/goodway_tw/turning/horizontal/gls-1500/.
[44]沅銘企業,2019,外徑車刀架,https://www.yuanminn.com.tw/zh/product_item/105.html.
[45]世鋁網,2019,鋁合金車削過程中積屑瘤的產生,https://big5news.cnal.com/2009/07-03/124662234162376.shtml.
[46]Renishaw,2019,HP 臂和RP3刀具設定測頭,https://www.renishaw.com.tw/tw/hp-arms-and-rp3-tool-settingprobe-6098
[47]T. M. Elektronik., 2019, RAYEX ELECTRONICS LEG-5F, https://www.tme.eu/en/details/leg-5f/miniature-electromagnetic-relays/rayex-electronics/.
[48]Plone基金會,2019,X ∕ Z 兩軸的定義及座標定義,http://support.intek.com.tw
[49]維基百科,2019,機器學習,https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0.
[50]維基百科,2019,DeepMind,https://zh.wikipedia.org/wiki/DeepMind.
[51]GCP專家部落格,2019,人工智慧、機器學習、深度學習是什麼,https://blog.gcp.expert/ml-1-ai-ml-deep-learning-intro/.
[52]富捷IT培訓,2018,機器學習的4種模型,https://blogs.geego.com/skillsinfo/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E7%9A%844%E7%A8%AE%E6%A8%A1%E5%9E%8B%EF%BC%9A%E7%9B%A3%E7%9D%A3%E3%80%81%E9%9D%9E%E7%9B%A3%E7%9D%A3%E3%80%81%E5%8D%8A%E7%9B%A3%E7%9D%A3%E5%8F%8A%E5%A2%9E%E5%BC%B7/.
[53]維基百科,2019,監督式學習,https://zh.wikipedia.org/wiki/%E7%9B%A3%E7%9D%A3%E5%BC%8F%E5%AD%B8%E7%BF%92.
[54]林俊良,2016,智慧型控制:分析與設計(第三版),全華圖書。
[55]T. Huang,2019,機器學習-神經網路(多層感知機詳細推導,https://medium.com/@chih.sheng.huang821/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF%E5%A4%9A%E5%B1%A4%E6%84%9F%E7%9F%A5%E6%A9%9FmultilayerperceptronmlpE5%90%AB%E8%A9%B3%E7%B4%B0%E6%8E%A8%E5%B0%8Eee4f3d5d1b41.
[56]M. Opengate,2019,使用激勵函數的目的、如何選擇激勵函數,https://mropengate.blogspot.com/2017/02/deep-learning-role-of-activation.html.