|
[1]A. Safdar et al., Evaluation of microstructural development in electron beam melted Ti-6Al-4V, Materials Characterization, Vol. 65, 8-15(2012) [2]MatWeb.Mechanical properties of Titanium alloy (α), available:http://www.matweb.com/search/DataSheet.aspx?MatGUID=9162041f12e840579 e994e6fcfac2650 [3]MatWeb.Mechanical properties of Titanium alloy (α+β), available:http://www.matweb.com/search/DataSheet.aspx?MatGUID=4dac23c848db4780a 067fd556906cae6 [4]MatWeb.Mechanical properties of Titanium alloy (β), available:http://www.matweb.com/search/DataSheet.aspx?MatGUID=89638199eca141e49 67837481021361f&ckck=1 [5]Wiki.Wolff's law, available:https://en.wikipedia.org/wiki/Wolff%27s_law [6]B. Dutta1 et al., The Additive Manufacturing (AM) of titanium alloys, Metal Powder Report, Vol. 72, 96-106(2017) [7]Lawrence E.Murr et al., Next Generation Orthopaedic Implants by AdditiveManufacturing Using Electron BeamMelting, International Journal of Biomaterials, 1-14(2012) [8]L.E. Murr et al., Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti-6Al-4V, Materials characterization, Vol. 60, 96-105(2009) [9]林得耀、林敬智、莊傳勝、黃偉欽、吳誌賢、劉松河,積層製造成形技術與應用,工 業材料雜誌,357 期,93-105(2016) [10]陳溪山、周育賢、侯彥羽、楊智超,金屬粉末積層製造技術在航太領域之發展與機 會(上),工業材料雜誌,35 7 期,73-83(2016) [11]葉錦清,3D 列印(積層製造)產業發展現況分析,工業材料雜誌,346 期,67-72 (2015) [12]鄭正元等人,3D 列印積層製造技術與應用-Chapter9 粉床熔融技術,全華圖書股份 有限公司,1-9(2017) [13]The working principles of SLM, available:http://3dprintingfromscratch.com/common/types-of-3d-printers-or-3d-printing-t echnologies-overview/#slm [14]Arcam.Welcome to Manufacturing UNBOUND, available:http://www.arcamebm.com [15]潘琰峰,沈以赴,顧冬冬,楊家林,王洋,316 不鏽鋼粉末直接激光燒結的球化效 應,中國械工程,第16 卷,第17 期,1573-1576(2005) [16]葉子暘、曹申、賴宏仁,3D 列印用金屬粉體材料技術與應用發展,工業材料雜誌, 346 期,72-82(2015) [17]C. Leyens and M.Peters, Titanium and Titanium Alloys - Chapter1 Structure and Properties of Titanium and Titanium Alloys, Wiley-VCH Verlag GmbH & Co. KGaA, 1-35(2003) [18]The phase diagram of Ti-Al, available:http://www.calphad.com/titanium-aluminum.html [19]蔡錫鐃、黃振賢,材料實驗(彩色版)-Chapter3 硬度試驗,文京圖書有限公司, 49-122(1995) [20]蔡錫鐃、黃振賢,材料實驗(彩色版)-Chapter4 拉伸試驗,文京圖書有限公司, 153-197(1995) [21]蔡錫鐃、黃振賢,材料實驗(彩色版)-Chapter11 疲勞試驗,文京圖書有限公司, 343-362(1995) [22]蔡長有、許禎祥、許振聲、陳伯宜,機械材料實驗-第7 章 勃氏硬度試驗,全華圖 書股份有限公司,第三版,1-20(2015) [23]蔡長有、許禎祥、許振聲、陳伯宜,機械材料實驗-第8 章 洛氏硬度試驗,全華圖 書股份有限公司,第三版,1-14(2015) [24]蔡長有、許禎祥、許振聲、陳伯宜,機械材料實驗-第9 章 維氏硬度試驗,全華圖 書股份有限公司,第三版,1-23(2015) [25]蔡長有、許禎祥、許振聲、陳伯宜,機械材料實驗-第10 章 蕭氏硬度試驗,全華圖 書股份有限公司,第三版,1-7(2015) [26]蔡長有、許禎祥、許振聲、陳伯宜,機械材料實驗-第2 章 拉伸試驗,全華圖書股 份有限公司,第三版,1-20(2015) [27]蔡長有、許禎祥、許振聲、陳伯宜,機械材料實驗-第11 章 疲勞試驗,全華圖書股 份有限公司,第三版,1-13(2015) [28]黃振賢,機械材料(新修訂二版)-第二章 金屬材料總論,新文京開發出版股份有 限公司,102-127(2009) [29]Reza Abbaschian et al., Physical Metallurgy Principles-Chapter21 Fatigue of metals, CENGAGE Learning, 686-729(2009) [30]疲勞斷口的宏觀形貌特徵,available:http://big5.164580.com/article/detail_24416.html [31]Lothar W. Meyer et al., Dynamic strength and failure behavior of titanium alloy Ti-6Al-4V for a variation of heat treatments, Mech Time-Depend Mater, 1-12(2008) [32]張國寶,彭楚峰,吳鶴,Ti6Al4V 合金精鑄件疲勞性能試驗研究,Foundry Technology, Vol. 29,45-48(2008) [33]X.Y.Cheng et al., Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting, Journal of the mechanical behavior of biomedical materials, Vol. 16, 153-162(2012) [34]A. Mohammadhosseini et al., Microstructure and mechanical properties of Ti-6Al-4V manufactured by electron beam melting process, Materials Research Innovations, Vol.17, 106-112(2013) [35]Manikandakumar et al., Microstructure and mechanical properties of wrought and Additive manufactured Ti-6Al-4V cylindrical bars, Procedia Technology, Vol. 20, 231-236(2015) [36]Nikolas Hrabe et al., Fatigue properties of a titanium alloy (Ti-6Al-4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress, International Journal of Fatigue, Vol. 94, 202-210(2017) [37]Daniel Greitemeier et al., Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting, International Journal of Fatigue, Vol. 94, 211-217(2017) [38]Xiaoli Shui, Kenta et al., Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting, Materials Science & Engineering A, Vol. 680, 239-248(2017) [39]S. Van Bael et al., The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds, Acta Biomaterialia, Vol. 8, 2824-2834(2012) [40]Jan Wieding et al., Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone, Journal of the mechanical behavior of biomedical materials, Vol. 37, 56-68(2014) [41]Bei Chang et al., Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth, Acta Biomaterialia, Vol. 33, 311-321(2016) [42]Arash Ataee et al., Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications, Materials and Design, Vol. 137, 345-354(2018) [43]Arcam EBM, available:http://www.arcam.com/technology/electron-beam-melting/hardware/ [44]林麗娟,X 光繞射原理及其應用,工業材料雜誌86 期,100-109(1994) [45]X-ray diffraction-Bruker D8 Discover, available:http://fys.kuleuven.be/iks/nvsf/ ... -bruker-d8-discover [46]羅聖全,科學基礎研究之重要冺器-掃瞄式電子顯微鏡,科學研習,第52 卷第5 期 (2013) [47]Wiki: scanning electron microscope, available:https://en.wikipedia.org/wiki/Scanning_electron_microscope [48]羅聖全,研發奈米科技的基本工具之-電子顯微鏡介紹TEM,工業材料雜誌(2004) [49]Atomic World, transmission electron microscope (TEM): principle of TEM, available:http://www.hk-phy.org/atomic_world/tem/tem02_e.html [50]FIB-SEM 雙束技術簡介,available:https://read01.com/n0BBzN.html#.XAHI02gzZPY [51]Joakim Reuteler, Introduction to FIB‐SEM (Basic Physics and Applications), Eidgenössische Technische Hochschule Zürich,1-31 [52]材料世界網-低溫DB-FIB 分析技術介紹, available:http://karls-tech.de/post/%E5%B1%82%E7%8A%B6%E7%BB%93%E6%9E% 84%E9%93%9C%E7%BA%B3%E7%B1%B3%E7%BA%BF%E7%9A%84%E8%A1% A8%E5%BE%81-11/ [53] Wiki: Focused ion beam, available:https://en.wikipedia.org/wiki/Focused_ion_beam [54]元素分析儀,available:http://www.ncku.edu.tw/facility/facility/devices/04_EA.htm [55]The Welding Institute, Hardness Testing Part 1-Vickers Hardness Test, available:http://www.twi-global.com/technical-knowledge/job-knowledge/hardness-testin g-part-1-074/ [56]蔡錫鐃,非破壞檢測實驗-第七章 射線檢測實驗,新文京開發出版股份有限公司, 195-241(2005) [57]陳永增、鄧惠源,非破壞檢測- Chapter5 射線檢測,全華圖書股份有限公司, 1-66(2009) [58] Mitutoyo 表面粗度儀SJ-410 操作說明書 [59]林奎杰、吳正興、劉軒宗,表面粗糙度的量測,逢甲大學自動工程學系專題製作(2003) [60]朱柏豪,表面輪廓儀的用途,奈米通訊 22 卷,No. 1,31-33(2015) [61]CT 成像基本原,available:https://read01.com/zh-tw/ggyg6oB.html#.W79Cm2gzZPY [62]Jae G Kim et al., Inter-plane artifact suppression in tomosynthesis using 3D CT image data, BioMedical Engineering OnLine,1-15(2011) [63] ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials(2016) [64] CNS 7375,G 2078,金屬材料疲勞試驗試片,1 號試片 [65]Yu Sun et al., Comparison of virgin Ti-6Al-4V powders for additive manufacturing, Additive Manufacturing, Vol. 215, 44-555(2018) [66]楊智超,3D 列印金屬粉末與應用技術驗證帄台,工業技術研究院,130-131 [67]Advanced electron microscopy solutions for characterization of microstructures in additive manufacturing, available:https://www.materialstoday.com [68]S. Van Bael et al., The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds, Acta Biomaterialia 8, 2824-2834(2012). [69]Dongdong Gu et al., Balling phenomena in direct laser sintering of stainless steel powder:Metallurgical mechanisms and control methods, Materials and Design, Vol. 30 2903-2910(2009) [70]Souvik Brahma Hota, Eliminating the Stair Step Effect of Additive Manufactured Surface-A Review Paper, International Journal for Research in Applied Science & Engineering Technology, Vol. 5, 1608-1619(2017) [71]Evren Yasa et al.,Iinvestigation on occurrence of elevated edges in selective laser melting, Solid Freeform Fabrication Proceedings, 673-685(2009) [72]Pan Wang et al., Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting, Materials 2017, Vol.10, 1-11(2017) [73]A. Safdara et al., Evaluation of microstructural development in electron beam melted Ti-6Al-4V, Materials Characterization, Vol. 94, 8-15(2012) [74]Davis A. Porter et al., Phase transformations in metals and alloys- Chapter4 Solidification, Taylor & Francis Group, 189-257(2009) [75]Xipeng Tan et al, Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting, Acta Materialia, Vol. 97, 1-16(2015) [76]Bhaskar Dutta et al., Additive Manufacturing of Titanium Alloys- Chapter4 Microstructure and Mechanical Properties, Elsevier Inc , 41-89(2016) [77]楊牧君,孔洞結構力分析於積層製造人工髖關節之應用,國立成功大學材料科學及 工程學系碩士論文(2018) [78]Ming-Wei Wu et al., Improved fatigue endurance ratio of additive manufactured Ti-6Al-4V lattice by hot isostatic pressing, Materials and Design 134, 163-170(2017) [79]Haijun Gong et al., Influence of defects on mechanical properties of Ti-6Al-4V Components produced by selective laser melting and electron beam melting, Materials and Design 86, 545-554(2015) [80]王庭雍,積層製造Ti-6Al-4V 快速凝固合金之熱力學分析與微結構及機械性質鑑定, 國立成功大學材料科學及工程學系碩士論文(2018)
|