|
[1] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [2] Ripley, B. D., & Hjort, N. L. (1996). Pattern recognition and neural networks. Cambridge university press. [3] Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma, Technische Universität München, 91(1). [4] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. [5] Kather, J. N., Weis, C. A., Bianconi, F., Melchers, S. M., Schad, L. R., Gaiser, T., ... & Zöllner, F. G. (2016). Multi-class texture analysis in colorectal cancer histology. Scientific reports, 6, 27988. [6] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). [7] Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham. [8] Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Training very deep networks. In Advances in neural information processing systems (pp. 2377-2385). [9] J. Pathol. Inform. (2017), p. 8 Tompson, J., Jain, A, LeCun, Y. & Bregler, C. Joint training of convolutional network and a graphical model for human pose estimation. In Proc. Advances in Neural Information Processing SyStems 27 1799–1807 (2014) [10] Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham. [11] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9). [12] Venables, W. N., & Ripley, B. D. (2013). Modern applied statistics with S-PLUS. Springer Science & Business Media. [13] Ripley, B. D., & Hjort, N. L. (1996). Pattern recognition and neural networks. Cambridge university press.Christian Szegedy et al,Going Deeper with Convolutions ,In ICLR, 2015. [14] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [15] He, K., Zhang, X., Ren, S., & Sun, J. (2016, October). Identity mappings in deep residual networks. In European conference on computer vision (pp. 630-645). Springer, Cham. [16] Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. [17] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826). [18] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-First AAAI Conference on Artificial Intelligence. [19] Liu, W., Wen, Y., Yu, Z., & Yang, M. (2016, June). Large-margin softmax loss for convolutional neural networks. In ICML (Vol. 2, No. 3, p. 7). [20] He, K., & Sun, J. (2015). Convolutional neural networks at constrained time cost. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5353-5360). [21] Krähenbühl, P., & Koltun, V. (2011). Efficient inference in fully connected crfs with gaussian edge potentials. In Advances in neural information processing systems (pp. 109-117). [22] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. [23] Kather, J. N., Weis, C. A., Bianconi, F., Melchers, S. M., Schad, L. R., Gaiser, T., ... & Zöllner, F. G. (2016). Multi-class texture analysis in colorectal cancer histology. Scientific reports, 6, 27988. [24] Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university press. [25] Lee, C. Y., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (2015, February). Deeply-supervised nets. In Artificial intelligence and statistics (pp. 562-570). [26] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).. [27] Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Training very deep networks. In Advances in neural information processing systems (pp. 2377-2385). [28] Bell, R. M., & Koren, Y. (2007). Lessons from the Netflix prize challenge. SiGKDD Explorations, 9(2), 75-79.
|