1. 王棋,2000,「醫院外包管理構築模式之研究:整合性觀點」,中山大學,碩士論文。2. 王敬育,2005,「一個關於使用群體智慧解決非線性資源分配問題的研究」,暨南國際大學,碩士論文。3. 田佳芸,2007,「變動鄰域搜尋法於雙目標平行機台排程問題之研究」,元智大學,碩士論文4. 朱哲民,2004,「動態系統資源分配問題最佳化方法之研究」,屏東科技大學,碩士論文。5. 朱碩智,2004,「資源受限之專案排程下的資源配置與排程問題」,中正大學,碩士論文。6. 李仁鐘,2002,「以族群為基礎之啟發式演算法應用於武器對目標指派問題」,國立台灣科技大學,博士論文。7. 莊尚平,2000,「資源基礎理論下持久競爭優勢之整合性架構初探」,台灣科技大學,碩士論文。8. 郭男極,2008,「變動鄰域搜尋法於多目標專案投資組合問題之研究」,元智大學,碩士論文。9. 高淑娟,2008,「應用變動鄰域搜尋法於資源分配問題之研究」,元智大學,碩士論文。10. 許志義,2003,多目標決策增訂版,五南圖書出版股份有限公司。
11. 張子明,2004,「應用模糊多準則決策於企業研發資源分配之研究」,南台科技,碩士論文。12. 陳文瑞,2001,「嵌入限制條件於基因演算法之研究-以自然產及剖腹產資源分配為例」,東海大學,碩士論文。13. 陳怡靜,2005,「變動鄰域搜尋法於串並聯系統複置配置問題之研究」,元智大學,碩士論文。14. 黃嘉斌,2005,「分析層級程序法應用於綜合卷商研究部資源配置-以F證卷為例」,東海大學,碩士論文。15. 蔡與哲,2000,「運用先進規劃排程之概念建立多廠生產的資源分配與生產規劃模式」,國立台灣大學,碩士論文。16. Barney, J. B., “Firm Resources and Sustained Competitive Advantage,” Journal of Management, vol.17, no.1, pp.99-120, 1991.
17. Chaharsooghi, S. K., and A. H. M. Kermani, “An Effective Ant Colony Optimization Algorithm (ACO) for Multi-Objective Resource Allocation Problem (MORAP),” Applied Mathematics and Computation, vol.200, pp.167-177, 2008.
18. Doerner, K., W.J. Gutjahr, R.F. Hartl, C. Strauss, and C. Stummer, “Pareto Ant Colony Optimization: A Metaheuristic Approach to Multi-Objective Portfolio Selection,” Annals of Operations Research, vol. 131, pp.79-99, 2004.
19. Gagné, C., M. Gravel, and W. L. Price, “Using Meta-heuristic Compromise Programming for the Solution of Multiple-Objective Scheduling Problems,” Journal of the Operational Research Society, vol.56, pp.687-698, 2005.
20. Geiger, M. J., “Randomised Variable Neighborhood Search for Multi-Objective Optimization,” Proceedings of EU/ME Workshop: Design and Evaluation of Advanced Hybrid Meta-Heuristics, pp.34-42, 2004.
21. Geiger, M. J., “Foundations of the Pareto Iterated Local Search Meta-heuristic,” The 18th International Conference on Multiple Criteria Decision Making - MCDM 2006 (Crete, Greece).
22. Gravel, M., W.L. Price, and C. Gagné, “Scheduling Continuous Casting of Aluminum Using a Multiple-Objective Ant Colony Optimization Metaheuristic,” European Journal of Operational Research, vol.143, pp.218-229, 2002.
23. Hansen, M. P., and A. Jaszkiewicz, and R. Slowinski, “Evaluating the Quality of Approximations to the Non-dominated Set,” Technical Report IMM-REP-1998-7, Technical University of Denmark, 1998.
24. Hansen, P., and N. Mladenović, “Variable Neighborhood Search for the P-median,” Location Science, vol.5, pp.207-226, 1997.
25. Hou, Y. C. and Y. H. Chang, “A New Efficient Encoding Mode of Genetic Algorithms for the Generalized Plant Allocation Problem,” Journal of Information Science Engineering, vol.20, pp.1019-1034, 2004.
26. Hussein, M. L., and M. A. Abo-Sinna, “A Fuzzy Dynamic Approach to the Multi-Criterion Resource Allocation Problem,” Fuzzy Sets and Systems, vol.69, pp.115-124, 1995.
27. Ibaraki, T., and N. Katoh, Resource Allocation Problems: Algorithmic Approaches, MIT Press, Boston, 1988.
28. Ishibuchi, H., T. Yoshida, and T. Murata, “Balance between Genetic Search and Local Search in Memetic Algorithms for Multi-Objective Permutation Flow shop Scheduling,” IEEE Transactions on Evolutionary Computation, vol.7, no.2, pp. 204-223, 2003.
29. Jaszkiewicz, A., “On the Performance of Multiple-Objective Genetic Local Search on the 0/1 Knapsack Problem - A Comparative Experiment,” IEEE Transactions on Evolutionary Computation, vol.6, pp.402-412, 2002.
30. Jnowles, J., “Local-search and Hybrid Evolutionary Algorithms for Pareto Optimization,” Ph.D. Thesis, University of Reading, Department of Computer Science, Reading, U.K., 2002.
31. Lai, K. K. and L. Li, “A Dynamic Approach to Multiple-Objective Resource Allocation Problem,” European Journal of Operational Research, vol.117, pp.293-309, 1999.
32. Lee, Z. J. and C. Y. Lee, “A Hybrid Search Algorithm with Heuristics for Resource Allocation Problem,” Information Sciences, vol.173, pp.155-167, 2005.
33. Liang, Y.C. and M.H. Lo, “Multi-Objective Redundancy Allocation Optimization Using a Variable Neighborhood Search Algorithm,” Journal of Heuristics, 2009, DOI: 10.1007/s10732-009-9108-4.
34. Lin, C. M. and M. Gen, “Multi-Objective Resource Allocation Problem by Multistage Decision-based Hybrid Genetic Algorithm,” Applied Mathematics and Computation, vol.187, pp.574-583, 2007.
35. Lin, C. M. and M. Gen, “Multi-Criteria Human Resource Allocation for Solving Multistage Combinatorial Optimization Problems Using Multi-Objective Hybrid Genetic Algorithm,” Expert Systems with Applications, vol.34, pp.2480-2490, 2008.
36. Luss, H. and S.K. Gupta, “Allocation of Effort Resource Among Competing Activities,” Operations Research, vol.23, pp.360-366, 1975.
37. Naverniouk, I., “Multi-Objective Graph Clustering with Variable Neighborhood Descent,” Master of Science, Faculty of Graduate Studies. Computer Science, University of British Columbia, 2005.
38. Osman, M. S., M. A. Abo-Sinna and A. A. Mousa, “An Effective Genetic Algorithm Approach to Multi-Objective Resource Allocation Problems,” Applied Mathematics and Computation, vol.163, pp.755-768, 2005.
39. Penrose, E. T., “The Theory of the Growth of the Firm,” New York, Wiley, 1959.
40. Stummer, C., and M. Sun, “New Multi-Objective Meta-heuristic Solution Procedures for Capital Investment Planning,” Journal of Heuristics, vol.11, no.3, pp.183-199, 2005.
41. Tan, K. C., E. F. Khor, T. H. Lee and Y. J. Yang, “A Tabu-Based Exploratory Evolutionary Algorithm for Multi-Objective Optimization,” Artificial Intelligence Review, vol.19, pp.231-260, 2003.
42. Van Veldhuizen, D. A., Multi-Objective Evolutionary Algorithm: Classification, Analyses, and New Innovations, Ph.D. Thesis, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, 1999.
43. Wang, J. Y. and P. Y. Yin, “Optimal Multi-Objective Res ource Allocation Using Hybrid Particle Swarm Optimization and Adaptive Resource Bounds Technique,” Journal of Computational and Applied Mathematics, vol.216, pp.73-86, 2006.
44. Wernerfelt, B., “A Resource-based View of the Firm,” Strategic Management Journal, vol.5, pp.171-180, 1984.
45. Zitzler, E., L., Thiele, M., Laumanns, C. M. Fonseca and V. G. da Fonseca, “Performance Assessment of Multi-Objective Optimizers: An Analysis and Review.” IEEE Transactions on Evolutionary Computation, vol.7, pp.117-132, 2003.