|
Almogy, Y., O. Levin (1969), ''''Parametric analysis of a multi-stage stochastic shipping problem,'''' Proc. Fifth IFORS Conference, Venice, pp.359-370. Avriel, M., W. Diewert, S. Schaible, and I. Zang (1988), Generalized Concavity, Plenum Press, New York. Bar-On, J.R., K.A. Grasse (1997), ''''Global optimization of a quadratic functional with quadratic equality constraints, Part 2,'''' Journal of Optimization Theory and Applications 93, No.3., pp.547-556. Bar-On, J.R., K.A. Grasse (1994), ''''Global Optimization of a Quadratic Functional with Quadratic Equality Constraints,'''' Journal of Optimization Theory and Applications 82, No.2, pp.379-386. Bazaraa, M.S., H.D. Sherali, and C.M. Shetty (1993), Nonlinear Programming: Theory and Algorithms, 2/e, John Wiley \& Sons, Inc., New York. Berberian, S.K. (1992), Linear Algrbra, Oxford University Press, Walton Street, Oxford. Bhatt, S.K. (1989), ''''Equivalence of various linearization algorithms for linear fractional programming,'''' ZOR-Methods and Models of Operations Research 33, pp.39-43. Cambini, A., L. Martein, S. Schaible (1989), ''''On maximizing a sum of ratios,'''' Journal of Information and Optimization Sciences 10, No.1, pp.65-79. Craven, B.D. (1988), Fractional Programming, Heldermann Verlag, Berlin. Dong, W.M., F.S. Wong (1987), ''''Fuzzy weighted averages and implementation of extension principle,'''' Fuzzy sets and Systems 21, pp.183-199. Falk, J.E., S.W. Palocsay (1992), ''''Optimizing the sum of linear fractional functions,'''' Collection: Recent Advances in Global Optimization (1992), C.A Floudas et al. ed., Princeton University Press, Princeton, pp.221-258. Falk, J.E., S.W. Palocsay (1994), ''''Image space analysis of generalized fractional programs,'''' Journal of Global Optimization 4, pp.63-88. Flippo, O.E., Jansen, B. (1996), ''''Duality and sensitivity in nonconvex quadratic optimization over an ellipsoid,'''' European Journal of Operational Research 94, pp.167-178. Forgo, F. (1988), Nonconvex Programming,, Akademiai Kiado, Budapest. Fradkov, A.L., V.A. Yakubovich (1979), ''''The S-procedure and a duality relations in nonconvex problems of quadratic programming,'''' Vestnik St. Petersburg University Mathematics 6, No.1, pp.101-109. Fradkov, A.L. (1973), ''''Duality theorems in certain nonconvex extremal problems,'''' Siberian Mathematical Journal of the Academy of Sciences of the USSR 14, No.2, pp.247-264. Guh, Y.-Y., C.-C. Hon, K.-M. Wang, and E.S. Lee (1996), ''''Fuzzy weighted average: a max-min paired elimination method,'''' Computers and Mathematics with Applications 32, No.8, pp.115-123. Guu, S.-M., Y.-C. Liou (1999), ''''A linear-time algorithm for the fuzzy weighted average method,'''' Workshop on the Chinese Institute of Industrial Engineering (Submitted). Guu, S.-M., Y.-C. Liou (1998), ''''On a quadratic optimization problem with equality constraints,'''' Journal of Optimization Theory and Applications 98, No. 3, pp.733-741. Hansen, P., M.V.P. de Aragao, and C.C. Ribeiro (1991), ''''Hyperbolic 0-1 programming and optimization in information retrieval,'''' Mathematical Programming 52, pp.255-263. Hirche, J. (1996), ''''Optimizing of sums and products of linear fractional functions under linear constraints,'''' Optimization 38, No.1, pp.39-48. Hirche, J. (1996), ''''A note on programming problems with linear-plus-linear-fractional objective functions,'''' Eur. J. Oper. Res. 89, No.1, pp.212-214. Horst, R., H. Tuy (1996), Global Optimization: Deterministic Approaches, 3/e, Springer-Verlag, Heidelberg. Konno, H., Y. Yajima, T. Matsui (1991), ''''Parametric simplex algorithms for solving a special class of nonconvex minimization problems,'''' Journal of Global Optimization 1, pp.65-81. Konno, H., H. Yamashita (1999), ''''Minimizing sums and products of linear fractional functions over a polytope,'''' Naval Research Logistics 46, pp.583-596. Kornbluth, J.S.H., R.E. Steuer (1981), ''''Multiple objective linear fractional programming,'''' Management Science 27, pp.1024-1039. Lee, D.H., D. Park (1997), ''''An efficient algorithm for fuzzy weighted average,'''' Fuzzy Sets and Systems 87, pp.39-45. Levitin, E.S. (1994), Perturbation Theory in Mathematical Programming and Its Applications, John Wiley & Sons, Inc., New York. Liou, T.S., M.J. Wang (1992), ''''Fuzzy weighted average: an improved algorithm,'''' Fuzzy sets and Systems 49, pp.307-315. Luc, D.T., Jahn, J. (1992), ''''Axiomatic approach to duality in optimization,'''' Numerical Functional Analysis and Optimization 13 (3ƀ), pp.305-326. Lucidi, S., L. Palagi, and M. Roma (1994), Quadratic programs with quadratic constraint: characterization of KKT points and equivalence with an unconstrainted problem, Technical Reports 24.94, Dipartimento di Informatica e Sistemistica, Universita di Roma ''''La Sapienza'''', Roma, Italy. Luenberger, D.G. (1984), Linear and Nonlinear Programming, Addison-Wesley Publishing Company, Massachusetts, Massachusetts. Mangasarian, O.L. (1969), Nonlinear Programming, McGraw-Hill, Inc., New York. Martos, B. (1975), Nonlinear Programming: Theory and Methods, Akademiai Kiado, Budapest. Matveev, A.S., Yakubovich, V.A. (1997), ''''Nonconvex problems of global optimization: linear-quadratic control problems with quadratic constraints,'''' Dynamics and Control 7, pp.99-134. Matveev, A.S., Yakubovich, V.A. (1993), ''''Nonconvex problems of global optimization,'''' St. Petersburg Mathematical Journal 4, No.6, pp.1217-1243. Matveev, A.S. (1994), ''''Absence of local minima for a class of nonconvex optimization problems,'''' Vestnik St. Petersburg University Mathematics 27, No.1, pp.38-42. Nemirovsky, A.S., D.B. Yudin (1983), Problem Complexity and Method Efficiency in Optimization, John Wiley & Sons, Ltd., New York. Pratt, V., M. Blum, R.W. Floyd, R.L. Rivest and R.E. Tarjan (1973), ''''Time bounds for selection,'''' Journal of Computer and System Sciences 7, 448-461. Robillard, P. (1971), ''''(0,1) hyperbolic programming problems,'''' Naval Research Logistics Quarterly 18, pp.47-57. Schaible, S. (1994), Fractional Programming with Sums of Ratios, University of Pisa Press, Report n.83, Pisa, Italy. Schaible, S. (1977), ''''A note on the sums of a linear and linear-fractional function,'''' Naval Research Logistics 24, No.4, pp.691-693. Scott, C.H., T.R. Jefferson (1998), ''''Duality of a nonconvex sums of ratios,'''' Journal of Optimization Theory and Applications 98, No.1, pp.151-159. Stancu-Minasian, I.M., ''''On a class of nonlinear fractional programming problems,'''' Rev. Ronmaine Math. Pures Appl., pp.285-290. Stancu-Minasian, I.M.(1997), Fractional Programming: Theory, Methods and Applications, Kluwer Academic Publishers, Dordrecht, Netherlands. Steuer R.E. (1986), Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley & Sons, Inc., New York. Strang, G. (1986), Linear Algebra and Its Applications, Harcourt Brace Jovanovich Publisher, San Diego. Swarup, K. (1975), ''''Convex simplex method and nonlinear programming problems,'''' Indian Journal of Pure and Applied Mathematics 6, No.2, pp.190-209. Tuy, H. (1998), Convex Analysis and Global Optimization, Kluwer Academic Publishers, Netherlands. Yamashita, H. (1997), Efficient Algorithm for Minimizing the Sum and the Product of Linear Fractional Functions, Thesis 95M14186, Department of Industrial Engineering and Management, Tokyo Institute of Technology, Tokyo (in Japanese). Yakubovich, V.A. (1992), ''''A method for solution of special problems of global minimization,'''' Vestnik St. Petersburg University Mathematics 25, No.2, pp.55-63. Yakubovich, V.A. (1974), ''''The S-procedure in nonlinear control theory,'''' Vestnik St. Petersburg University Mathematics 4, No.1, pp.73-93. Yakubovich, V.A. (1973), ''''Minimization of quadratic functionals under quadratic constraints and the necessity of a frequency conditions in the quadratic criterion for absolute stability of nonlinear control systems,'''' Russian Academy of Sciences Doklady Mathematics 14, No.2, pp.593-597. Zangwill, W.I. (1967), ''''The convex simplex method,'''' Management Science 14, No.3., pp.221-238. Zangwill, W.I. (1969), Nonlinear Programming: A Unified Approach, Prentice-Hall, Inc., N.J..
|