1.一點資訊(2017)。別讓辛苦都白費!「運動順序」對減脂的影響有多大?。Zi字媒體。取自https://zi.media/@yidianzixun/post/5Dw8rQ
2.王興正(2012)。應用粒子群演算法於無人飛行載具結構系統之最佳化設計,淡江大學航空太空工程學系研究所,碩士論文。3.方紹宇(2005)。應用基因演算法於運動系統之前饋摩擦力補償,臺北科技大學自動化科技研究所,碩士論文。4.李世炳、鄒忠毅(2002)。簡介導引模擬退火法及其應用,中央研究院物理研究所,碩士論文。
5.李輝煌(2011)。田口方法:品質設計的原理與實務,新北市:高立圖書。
6.邵柏林等人(2014)。設施規劃,臺中市:滄海書局。
7.吳振雄(2010)。考慮多期動態訂單與多行單元之生產佈置最佳化,中原大學工業與系統工程研究所,碩士論文。8.林豐澤(2005)。演化式計算下篇:演化式演算法的三種理論模式,智慧科技與應用統計學報,第三卷,第1期,29-56。
9.林融玨(2007)。應用免疫演算法於發電機組維修排程之研究,淡江大學電機工程學系碩士班,碩士論文。10.林昇輔、徐永吉(2009)。遺傳演算法及其應用,臺北市:五南圖書。
11.林李旺(2013)。突破品質水準:實驗設計與田口方法之實務應用,新北市:全華圖書。
12.周秩年(2018)。運動服務業發展趨勢。台灣趨勢研究。取自http://www.twtrend.com/share_cont.php?id=62
13.夏倬彥(2008)。應用免疫演算法於輸電系統最佳化無效功率調度,國立臺北科技大學電機工程系研究所,碩士論文。14.陳建良、陳佳雯、徐盛宏(2001)。群組技術於晶圓廠布置之應用。中原學報,29(3),259-277。
15.陳建富(2009)。具權重特性偵測器配置問題之研究,國立虎尾科技大學資訊管理碩士班,碩士論文。16.陳威宇(2011)。以粒子群演算法求解流線型製造單元排程,交通大學工業工程與管理系所,碩士論文。17.張崇豪(2010)。應用田口方法於撲翼機之設計,成功大學航空太空工程學系研究所,碩士論文。18.黃坤裕(1991)。多途程單元形成問題之研究-以模擬退火法求解,國立成功大學工業管理研究所,碩士論文。19.黃啟倫(2010)。應用PSO演算法解決多途程單元形成問題,大同大學資訊經營研究所,碩士論文。20.湯庭卉(2006)。健康休閒俱樂部空間印象、服務品質與忠誠度關係之研究—以亞爵運動溫泉會館為例。中原大學室內設計研究所,碩士論文。21.甯方璽、陳佳菱(2014)。應用粒子群演算法改善傳統二次曲面擬合區域性大地起伏-以台中地區為例。臺灣土地研究,17(1),23-35。
22.鄒佳臻(2009)。粒子群演算法結合低閒置策略於生產排程之應用,中原大學資訊管理研究所,碩士論文。23.葉嘵月、陳志一(2006)。國立臺灣大學綜合體育館健身中心設施器材佈置顧客滿意度調查研究。運動教練科學,(7),39-50。
24.葉翔宇(2012)。應用蟻群分群系統解決多途程單元形成問題,大同大學資訊經營學系所,碩士論文。25.董至軒(2014)。離散型細菌分群演算法求解多途程單元形成問題,大同大學資訊經營學系(所),碩士論文。26.鄧宗倫(2010)。應用人工智慧法於最佳消毒作業之時窗限制車輛途程問題,國立虎尾科技大學工業工程與管理碩士班,碩士論文。27.劉禹宏(2002)。以遺傳演算法求解多目標單元形成在多途程上之研究,國立成功大學工業管理科學研究所,碩士論文。28.劉謹銘(2009)。以基因演算法求解雙流線型工廠排程,國立交通大學管理學院碩士在職專班工業工程與管理組,碩士論文。29.賴彥銘(2003)。應用群聚技術求解製造單元形成問題,大葉大學工業工程學系碩士班,碩士論文。30.鍾定丞(2013)。以粒子群演算法為基礎之正交鏡像濾波器組設計,臺灣大學電信工程學研究所,碩士論文。31.簡維宏(2010)。製造業應用單元製造之實證研究-以電子組裝業為例。國立臺北科技大學工業工程與管理研究所,碩士論文。32.蘇朝敦(2009)。品質工程,台北市:三民書局。
33.蘇桂成(2014)。應用人工智慧演算法探討需多種工序的多工件開放式排程問題,虎尾科技大學工業工程與管理研究所,碩士論文。34.Atmani, A., Lashkari, R. S., & Caron, R. J. (1995). A mathematical programming approach to joint cell formation and operation allocation in cellular manufacturing. The International Journal of Production Research, 33(1), 1-15.
35.Adenso-Dı́az, B., Lozano, S., Racero, J., & Guerrero, F. (2001). Machine cell formation in generalized group technology. Computers & Industrial Engineering, 41(2), 227-240.
36.Andres, C., & Lozano, S. (2006). A particle swarm optimization algorithm for part–machine grouping. Robotics and Computer-Integrated Manufacturing, 22(5-6), 468-474.
37.Ballakur, A., & Steudel, H. J. (1987). A within-cell utilization based heuristic for designing cellular manufacturing systems. International Journal of Production Research, 25(5), 639-665.
38.Boe, W. J., & Cheng, C. H. (1991). A close neighbour algorithm for designing cellular manufacturing systems. The International Journal of Production Research, 29(10), 2097-2116.
39.Boctor, F. F. (1991). A Jinear formulation of the machine-part cell formation problem. The International Journal of Production Research, 29(2), 343-356.
40.Bychkov, I., Batsyn, M., & Pardalos, P. M. (2016). Heuristic for Maximizing Grouping Efficiency in the Cell Formation Problem. In International Conference on Network Analysis (pp. 11-26). Springer, Cham.
41.Carrie, A. S. (1973). Numerical taxonomy applied to group technology and plant layout. The international journal of production research, 11(4), 399-416.
42.Chan, H. M., & Milner, D. A. (1982). Direct clustering algorithm for group formation in cellular manufacture. Journal of Manufacturing systems, 1(1), 65-75.
43.Chandrasekharan, M., & Rajagopalan, R. (1986). MODROC: an extension of rank order clustering for group technology. International Journal of Production Research, 24(5), 1221-1233.
44.Chandrasekharan, M. P., & Rajagopalan, R. (1989). GROUPABIL1TY: an analysis of the properties of binary data matrices for group technology. The International Journal of Production Research, 27(6), 1035-1052.
45.Cheng, C. H., Gupta, Y. P., Lee, W. H., & Wong, K. F. (1998). A TSP-based heuristic for forming machine groups and part families. International Journal of Production Research, 36(5), 1325-1337.
46.Dimopoulos, C., & Mort, N. (2001). A hierarchical clustering methodology based on genetic programming for the solution of simple cell-formation problems. International Journal of Production Research, 39(1), 1-19.
47.Defersha, F. M., & Chen, M. (2006). Machine cell formation using a mathematical model and a genetic-algorithm-based heuristic. International Journal of Production Research, 44(12), 2421-2444.
48.Durán, O., Rodriguez, N., & Consalter, L. A. (2010). Collaborative particle swarm optimization with a data mining technique for manufacturing cell design. Expert Systems with Applications, 37(2), 1563-1567.
49.Flynn, B. B., & Robert Jacobs, F. (1986). A simulation comparison of group technology with traditional job shop manufacturing. International Journal of Production Research, 24(5), 1171-1192.
50.Gravel, M., Nsakanda, A. L., & Price, W. (1998). Efficient solutions to the cell-formation problem with multiple routings via a double-loop genetic algorithm. European Journal of Operational Research, 109(2), 286-298.
51.Gonçalves, J. F., & Resende, M. G. (2004). An evolutionary algorithm for manufacturing cell formation. Computers & industrial engineering, 47(2-3), 247-273.
52.Hsu, C. P. (1990). The similarity coefficient approaches of machine-component cell formation in cellular manufacturing: a comparative study (Doctoral dissertation, University of Wisconsin-Milwaukee).
53.James, T. L., Brown, E. C., & Keeling, K. B. (2007). A hybrid grouping genetic algorithm for the cell formation problem. Computers & Operations Research, 34(7), 2059-2079.
54.King, J. R. (1980). Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm. International Journal of Production Research, 18(2), 213-232.
55.King, J. R., & Nakornchai, V. (1982). Machine-component group formation in group technology: review and extension. The International Journal of Production Research, 20(2), 117-133.
56.Kusiak, A., & Chow, W. S. (1987). Efficient solving of the group technology problem. Journal of manufacturing systems, 6(2), 117-124.
57.Kusiak, A., & Cho, M. (1992). Similarity coefficient algorithms for solving the group technology problem. The International Journal Of Production Research, 30(11), 2633-2646.
58.Liang, M., & Zolfaghari, S. (1999). Machine cell formation considering processing times and machine capacities: an ortho-synapse Hopfield neural network approach. Journal of Intelligent Manufacturing, 10(5), 437-447.
59.McAuley, J. (1972). Machine grouping for efficient production. Production Engineer, 51(2), 53-57.
60.McCormick Jr, W. T., Schweitzer, P. J., & White, T. W. (1972). Problem decomposition and data reorganization by a clustering technique. Operations Research, 20(5), 993-1009.
61.Mosier, C., & Taube, L. (1985). The facets of group technology and their impacts on implementation—a state-of-the-art survey. Omega, 13(5), 381-391.
62.Mosier, C., & Taube, L. (1985). Weighted similarity measure heuristics for the group technology machine clustering problem. Omega, 13(6), 577-579.
63.Mahdavi, I., Paydar, M. M., Solimanpur, M., & Heidarzade, A. (2009). Genetic algorithm approach for solving a cell formation problem in cellular manufacturing. Expert Systems with Applications, 36(3), 6598-6604.
64.Moon, C., & Gen, M. (1999). A genetic algorithm-based approach for design of independent manufacturing cells. International Journal of Production Economics, 60, 421-426.
65.Mukattash, A. M., Adil, M. B., & Tahboub, K. K. (2002). Heuristic approaches for part assignment in cell formation. Computers & industrial engineering, 42(2-4), 329-341.
66.Nsakanda, A. L., Diaby, M., & Price, W. L. (2006). Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings. European Journal of Operational Research, 171(3), 1051-1070.
67.Onwubolu, G. C., & Mutingi, M. (2001). A genetic algorithm approach to cellular manufacturing systems. Computers & industrial engineering, 39(1-2), 125-144.
68.P CHANDRASEKHARAN, M., & Rajagopalan, R. (1986). An ideal seed non-hierarchical clustering algorithm for cellular manufacturing. International Journal of Production Research, 24(2), 451-463.
69.Prabhaharan, G., Asokan, P., Girish, B. S., & Muruganandam, A. (2005). Machine cell formation for cellular manufacturing systems using an ant colony system approach. The International Journal of Advanced Manufacturing Technology, 25(9-10), 1013-1019.
70.Rajagopalan, R., & Batra, J. L. (1975). Design of cellular production systems a graph-theoretic approach. The International Journal of Production Research, 13(6), 567-579.
71.Stanfel, L. E. (1985). Machine clustering for economic production. Engineering costs and production economics, 9(1-3), 73-81.
72.Seifoddini, H., & Wolfe, P. M. (1986). Application of the similarity coefficient method in group technology. IIE transactions, 18(3), 271-277.
73.Seifoddini, H. (1989). A note on the similarity coefficient method and the problem of improper machine assignment in group technology applications. The international journal of production research, 27(7), 1161-1165.
74.Suresh Kumar, C., & Chandrasekharan, M. P. (1990). Grouping efficacy: a quantitative criterion for goodness of block diagonal forms of binary matrices in group technology. International Journal of Production Research, 28(2), 233-243.
75.Srinivasan, G., & Narendran, T. T. (1991). GRAFICS—a nonhierarchical clustering algorithm for group technology. The International Journal of Production Research, 29(3), 463-478.
76.Srinivasan, G. (1994). A clustering algorithm for machine cell formation in group technology using minimum spanning trees. The International Journal of Production Research, 32(9), 2149-2158.
77.Sofianopoulou, S. (1999). Manufacturing cells design with alternative process plans and/or replicate machines. International Journal of Production Research, 37(3), 707-720.
78.Sarker, B. R. (2001). Measures of grouping efficiency in cellular manufacturing systems. European Journal of Operational Research, 130(3), 588-611.
79.Suzić, N., Stevanov, B., Ćosić, I., Anišić, Z., & Sremčev, N. (2012). Customizing products through application of group technology: A case study of furniture manufacturing. Strojniški vestnik-Journal of Mechanical Engineering, 58(12), 724-731.
80.Sahin, Y. B., & Alpay, S. (2016). A metaheuristic approach for a cubic cell formation problem. Expert Systems with Applications, 65, 40-51.
81.Tariq, A., Hussain, I., & Ghafoor, A. (2007, November). Consideration of single machine cells in designing Cellular Manufacturing System using a Hybrid Genetic Algorithm. In 2007 International Conference on Emerging Technologies (pp. 6-10). IEEE.
82.Venkumar, P., & Haq, A. N. (2005). Manufacturing cell formation using modified ART1 networks. The International Journal of Advanced Manufacturing Technology, 26(7-8), 909-916.
83.Wu, X., Chu, C. H., Wang, Y., & Yan, W. (2002). A genetic algorithm for integrated cell formation and layout decisions. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600) (Vol. 2, pp. 1866-1871). IEEE.
84.Waghodekar, P. H., & Sahu, S. (1984). Machine-component cell formation in group technology: MACE. The International Journal of Production Research, 22(6), 937-948.
85.Xambre, A. R., & Vilarinho, P. M. (2003). A simulated annealing approach for manufacturing cell formation with multiple identical machines. European journal of operational research, 151(2), 434-446.
86.Yang, M. S., & Yang, J. H. (2008). Machine-part cell formation in group technology using a modified ART1 method. European Journal of Operational Research, 188(1), 140-152.