[1]黃昌耀, ”大中華鎂合金壓鑄工業現況與前景”, 台北國際鎂合金研討會, 2001, p.86-98。
[2]蔡宗亮, ”鎂合金焊接”, 2002。
[3]H. Haferkamp, M. Niemeyer, R. Boehm, U. Holzkamp, Christian Jaschik, V. Kaese, “Development, Processing and Applications Range of Magnesium Lithium Alloys”, Materials Science Forum. Volume 350-351, 2000, p.31-32.
[4]劉楚明;朱秀榮;周海濤, ”鎂合金相圖集”, 中南大學出版社, 2006。
[5]S. Lathabai, M. J. Painter, G. M. D. Cantin, V. K. Tyagi, “Friction spot joining of an extruded Al–Mg–Si alloy”, Scripta Materialia, Volume 55, Issue 10, 2006, p.899-902.
[6]B. M. Darras, M. K. Khraisheh, F. K. Abu-Farha, M. A. Omar, “Friction stir processing of commercial AZ31 magnesium alloy”, Journal of Materials Processing Technology, Volume 191, Issues 1–3, 2007, p.78-81.
[7]李曉剛, “材料腐蝕與防護”, 中南大學出版社, 2009, p.380-381。
[8]李晨希, 何世海, 劉政軍, 于寶義, “金屬材料及其成型性能”, 化學工業出版社, 2007。
[9]H. R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar, R. E. Kahrizsangi, M. Medraj, “In-vitro corrosion inhibition mechanism of fluorine-doped hydroxyapatite and brushite coated Mg–Ca alloys for biomedical applications”, Ceramics International, Volume 40, 2013, p.7971-7982.
[10]黎文獻, “鎂及鎂合金”, 中南大學出版社, 2005。
[11]M. M. Avedesian, H. Baker, “ASM Specialty Handbook: Magnesium and Magnesium Alloys”, ASM International, 1999, p.3-51.
[12]宋光鈴, “鎂合金腐蝕與防護”, 化學工業出版社, 2006。
[13]李云凱, “金屬材料學”, 北京理工大學出版社, 2006, p.164。
[14]E. F. Horst, B. L. Mordike, “Magnesium Technology: Metallurgy, Design Data, Applications”, Springer Verlag, 2006, p.29-62.
[15]R. W. Cahn, P. Haasen and E. J. Kramer, “Materials Science and Technology:Structure and Properties of Nonferrous Alloys”, VCH, New York, 1996, p.131-212.
[16]T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, “Binary Alloy Phase Diagrams”, ASM International”, Ohio, 1990.
[17]李云凱, “金屬材料學”北京理工大學出版社, p.164, 2006。
[18]J. Yang, J. Peng, A. Nyberg, F. S. Pan, “Effect of Ca addition on the corrosion behavior of Mg–Al–Mn alloy”, Applied Surface Science, Volume 369, 2016, p.92-100.
[19]C. Liu, H. Yang, P. Wan, K. Wang, L. Tan, K. Yang, “Study on biodegradation of the second phase Mg17Al12 in Mg-Al-Zn Alloys: In vitro experiment and thermodynamic calculation”, Materials Science and Engineering C, Volume 35, 2014, p.1-7.
[20]H. Kalb, A. Rzany, B. Hensel, “Impact of microgalvanic corrosion on the degradation morphology of WE43 and pure magnesium under exposure to simulated body fluid”, Corrosion Science, Volume 51, 2012, p.57.
[21]F. Witte, J. Fischer, J. Nellesen, C. Vogt, J. Vogt, T. Donath, F. Beckmann, “In vivo corrosion and corrosion protection of magnesium alloy LAE442”, Acta Biomaterialia, Volume 6, 2010, p.1792–1799.
[22]M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr, A. C. Nunes, “Flow Patterns During FrictIion Stir Welding”, Mater. Characterization 49, 2003, p.95-101.
[23]A. P. Reynold, W. D. Lockwood, T. U. Seidel, “Processing-Property Correlation in Friction Stir Welds”, Materials Science Forum Volume 331-337, 2000, p.1719.
[24]陳至豪, “摩擦攪拌 Mg-Li-Al-Zn 合金之改質組織特性及拉伸機械性質應變速率效應探討”, 國立虎尾科技大學材料科學與綠色能源工程研究所碩士論文, 2015。[25]Z. B. He, Y. Y. Peng, Z. M. Yin, X. F. Lei, “Comparison of FSW and TIG welded joints in Al-Mg-Mn-Sc-Zr alloy plate”, Transactions of nonferrous metals society of China, Volume 21, 2011, p.1685-1691.
[26]姚智凱, “摩擦攪拌改質對不同Zn/Al比之鎂合金圍觀組織與拉伸機械性質之效應研究”, 國立虎尾科技大學材料科學與綠色能源工程研究所碩士論文, 2016, p.12。[27]K. N. Krishnan, “On the formation of onion rings in friction stir welds”, Materials Science and Engineering, Volume 327, 2002, p.246-251.
[28]A.A. Hassan, A.F. Norman, D.A. Price, P. B. Prangnell, “Stability of nugget zone grain structures in high strength Al-alloy friction stir welds during solution treatment“, Acta Mater, Volume 51 (2003), p.1923.
[29]Y.S. Sato, M. Urata, H. Kokawa and K. Ikeda, “Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminum alloys“, Materials Science and Engineering, Volume 354, (2003), p.298.
[30]S. Benavides, Y. Li, L.E. Murr, D. Brown and J.C. McClure, “Low-temperature friction-stir welding of 2024 aluminum“, Scripta Mater, Volume 41 1999, p.809-815.
[31]G. Zhang, L. Wu, A. Tang, A. Atrens, “Fabrication and characterization of Mg-M layered double hydroxide films on anodized magnesium alloy AZ31”, Applied Surface Science, Volume 431, 2018, p.177-186.
[32]J. Chen, J. Wang, E. Han, J. Dong, W. Ke, “States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution”, Corrosion Science, Volume 50, 2008, p.1292–1305.
[33]T. Zhang, Y. W. Shao, G. Z. Meng, Y. Li, F. H. Wang, “Effects of hydrogen on the corrosion of pure magnesium”, Electrochimica Acta, Volume 52, 2006, p.1323–1328 .
[34]張裕祺, “金屬的腐蝕的科學”, 科學月刊, 第531期, 2014。
[35]鞏敏, “金屬腐蝕理論及腐蝕控制”, 化工工業出版, 2009, p.102-131。
[36]高穎、鄔冰, “電化學基礎”, 化工工業出版社, 2004, p.248-253。
[37]Z. Ahmad, “Principles of Corrosion Engineering and Corrosion Control”, Butterworth-Heinemann, 2006, chapter 4.
[38]柯賢文, “腐蝕及其防制”, 全華科技圖書股份有限公司, 1998。
[39]R. Ambat, N. N. Aung, W. Zhou, “Evaluation of Microstructural Effects on Corrosion Behaviour of AZ91D Magnesium Alloy”, Corrosion Science, Volume 42, 2000, p.1433.
[40]戴曼如, “生物活性鍍層與摩擦攪拌效應改善生物可降解性鎂合金抗腐蝕能力之研究”, 2015。
[41]楊聰仁, “腐蝕電化學分析”, p.5-9。
[42]Ji. Li, Q. Jiang, H. Sun, Y. Li, “Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt.% sodium chloride solution”, Corrosion Science, Volume 111, 2016, p.288-301.
[43]白新德, “材料腐蝕與控制”, 清華大學出版社, 2005, p.30-69。
[44]W. Stephen, Ph.D. Tait, “An introduction to electrochemical corrosion testing for practicing engineers and scientists”, Pair O Docs Pubns, 1994, Chapter 6.
[45]N. D. Nam, M. Z. Bian, M. Forsyth, M. Seter, M. Tan, K. S. Shin, “Effect of calcium oxide on the corrosion behaviour of AZ91 magnesium alloy”, Corrosion Science, Volume 64 2012, p.263-271.
[46]H. Feng, S. Liu, Y. Dua, T. Lei, R. Zeng, T. Yuan, “Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys”, Journal of Alloys and Compounds, Volume 695, 2017, p.2330-2338.
[47]G. Galicia, N. Pébère, B. Tribollet, V. Vivier, “Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy”, Volume 51, 2009, p.1789-1794.
[48]J. M. Hu, J. Q. Zhang, “Determination of water uptake and diffusion of Cl− ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy” Progress in Organic Coatings, Volume 46, 2003, p.273-279.
[49]A.M. Fekry, “Electrochemical corrosion behavior of magnesium and titanium alloys in simulated body fluid”, Electrochim. Acta, Volume 54, 2009, p.7280-7285.
[50]L. Wang, B.P. Zhang, T. Shinohara, “Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions”, Materials & Design, Volume 31, 2010, p.857-863.
[51]H. Feng, S. Liu, Y. Du, T. Lei, R. Zeng, T. Yuan, “Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys”, Journal of Alloys and Compounds, Volume 695, 2016, p.2330-2338.
[52]Y. Xin, K. Huo, H. Tao, G. Tang, P. K. Chua, “Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment”, Acta Biomaterialia, Volume 4, 2008, p.2008-2015.
[53]Q. Liua, Q. Mab, G. Chen, X. Caoa, S. Zhang, J Pan, G. Zhang, Q. Shi, “Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing”, Corrosion Science, Volume 138, 2018, p.284-296.
[54]R. Xu, X. Yang, K W. Suen, G. Wu, P. Li, P K. Chu, “Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation”, Applied Surface Science, Volume 263, 2012, p.608-612.
[55]B. J. Wang, D. K. Xu, J. H. Dong, W. Ke, “Effect of corrosion product films on the in vitro degradation behavior of Mg-3%Al-1%Zn (in wt%) alloy in Hank’s solution”, Journal of Materials Science & Technology, Volume 34, 2018, p.1756-1764.