[1]A. Matsubara, K. Lee, S. Ibaraki and Y. Kakino, “Enhancement of feed drive dynamics of NC machine tools by actively controlled sliding guideway,” JSME International Journal Series C, vol. 47, no.1, pp. 150-159, 2004.
[2]Y. Hori, H. Iseki and K. Sugiura, “Basic consideration of vibration suppression and disturbance rejection control of multi-inertia system using SFLAC (state feedback and load acceleration control),” IEEE Transactions on Industry Applications, vol. 30, no. 4, pp. 889-896, 1994.
[3]Y.-Y. Chen, P.-Y. Huang and J.-Y. Yen, “Frequency-domain identification algorithms for servo system with friction,” IEEE Transactions on Control Systems Technology, vol. 10, no. 5, pp. 654-665, 2002.
[4]K. Lee, S. Ibaraki, A. Matsubara, Y. Kakino, Y. Suzuki, S. Arai and J. Braasch, “A servo parameter tuning method for high-speed NC machine tools based on contouring error measurement,” WIT Transactions on Engineering Sciences, vol. 44, pp. 1-10, 2003.
[5]Y. Altintas, A. Verl, C. Brecher, L. Uriarte and G. Pritschow, “Machine tool feed drives,” CIRP Annals - Manufacturing Technology, vol. 60, no. 2, pp. 779-796, 2011.
[6]A. Matsubara, K. Lee, S. Ibaraki and Y. Kakino, “Enhancement of feed drive dynamics of NC machine tools by actively controlled sliding guideway, ” JSME International Journal Series C, vol. 47, no.1, pp. 150-159, 2004.
[7]Y. Altintas, A. Verl, C. Brecher, L. Uriarte and G. Pritschow, “Machine tool feed drives,” CIRP Annals - Manufacturing Technology, vol. 60, no. 2, pp. 779-796, 2011.
[8]K. Lee, S. Ibaraki, A. Matsubara, Y. Kakino, Y. Suzuki and Y. Yamaoka, “A servo parameter tuning method for high-speed NC machine tools based on contouring error measurement,” WIT Transactions on Engineering Sciences, vol. 44, pp. 12, 2003.
[9]H.-W. Huang, M.-S. Tsai and Y.-C. Huang, “Modeling and elastic deformation compensation of flexural feed drive system,” International Journal of Machine Tools and Manufacture, vol. 132, pp. 96-112, 2018.
[10]邱淑瑞,工具機傳動系統動態分析與振動抑制方法之研究,國立中正大學機械工程研究所,碩士論文,2014。
[11]陳俊堯,工具機傳動系統彈性變形補償與振動抑制,國立中正大學機械工程研究所,碩士論文,2015。
[12]C. H. Yeung, Y. Altintas, and K. Erkorkmaz, “Virtual CNC System. Part I. System Architecture,” International Journal of Machine Tools and Manufacture, vol. 46, no. 10, pp. 1107-1123, 2006.
[13]Y. Altintas, and S. Tulsyan, “Prediction of Part Machining Cycle Times via Virtual CNC,” CIRP Annals -manufacturing Technology, vol. 64, no. 1, pp. 361-364, 2015.
[14]Y. Altintas, P. Kersting, D. Biermann, E. Budak, B. Denkena, and I. Lazoglu, “Virtual Process Systems for Part Machining Operations,” CIRP Annals-manufacturing Technology, vol. 63, no. 2, pp. 585-605, 2014.
[15]C.-H. Lee, M.-Y. Yang, C.-W. Oh, T.-W. Gim and J.-Y. Ha, “An integrated prediction model including the cutting process for virtual product development of machine tools, International Journal of Machine Tools & Manufacturing, vol. 90, pp. 29-43, 2015.
[16]D. Kim, D. H. Son and D. Jeon, “Feed-system autotuning of a CNC machining center: Rapid system identification and fine gain tuning based on optimal search,” Precision Engineering, vol. 36, no. 2, pp. 339-348, 2012.
[17]K. Erkorkmaz and W. Wong, “Rapid identification technique for virtual CNC drives,” International Journal of Machine Tools and Manufacture, vol. 47, no. 9, pp. 1381-1392, 2007.
[18]Y.-Y. Chen, P.-Y. Huang and J.-Y. Yen, “Frequency-domain identification algorithms for servo system with friction,” IEEE Transactions on Control Systems Technology, vol. 10, no. 5, pp. 654-665, 2002.
[19]L. Ljiung, System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice-Hall, 1999.
[20]趙清風,使用MATLAB控制之系統識別,全華圖書股份有限公司,2001。
[21]J. Cui, Z. Chu and D. Wang, “Iterative learning control of high acceleration positioning table via sensitivity identification,” Advances in Mechanical Engineering, vol. 8, no. 2, pp. 1-11, 2016.
[22]C.-C. Fuh and H.-H. Tsai, “Adaptive parameter identification of servo control systems with noise and high-frequency uncertainties,” Mechanical Systems and Signal Processing, vol. 21, no. 3, pp. 1437- 1451, 2007.
[23]M. Gevers, P. Hägg, H. Hjalmarsson and J. Schoukens, “The transient impulse response modeling method and the local polynomial method for nonparametric system identification,” Automatica, vol. 68, pp. 314-328, 2016.
[24]黃建祐,CNC工具機之伺服調機軟體開發,國立虎尾科技大學機械設計工程研究所,碩士論文,2016。
[25]J. Lu, W. Xie and H. Zhou, “Combined fitness function based particle swarm optimization algorithm for system identification,” Computers and Industrial Engineering, vol. 95, pp. 122-134, 2016.
[26]C.-H. Lee and C.-Y. Lin, “Remote servo tuning system for multi-axis CNC machine tools using a virtual machine tool approach,” Applied Sciences, vol. 7, no.8, pp. 776-796, 2017.
[27]FANUC Corp., 65264EN-FANUC Servo Tuning Procedure.
[28]Siemens Corp., EN_B101 Servo Optimization, 2004.
[29]張釗維,工具機伺服進給系統鑑別與模擬分析研究,國立中興大學機械工程研究所,碩士論文,2016。
[30]陳信霖,工具機刀尖點動態特性之系統鑑別與模擬分析研究,國立中興大學機械工程研究所,碩士論文,2016。
[31]徐煒智,以頻域設計伺服馬達之共振抑制與精密控制實現,國立交通大學電機與控制工程研究所,碩士論文,2008。
[32]林業勛,CNC精密伺服運動之遠端診斷與調整系統,國立交通大學電控工程研究所,碩士論文,2015。
[33]梁金聰,以凹陷濾波器對撓性機構之減振控制,國立雲林科技大學機械工程研究所,碩士論文,2012。
[34]劉德葳,PCB機台之伺服模型最佳化與自動調校,國立虎尾科技大學機械設計工程研究所,碩士論文,2017。[35]林明宗、李孟哲、余坦達、李日傑、陳凌璇、劉德葳、黃建祐,智慧機械與機器人先進控制器技術之研發與應用,全華圖書股份有限公司,2019年4月。
[36]林建佑,五軸工具機雲端智能診斷與自動調機優化基於頻域系統鑑別,國立中興大學機械工程研究所,碩士論文,2017。
[37]H.-W. Chiu and C.-H. Lee, “Prediction of machining accuracy and surface quality for CNC machine tools using data driven approach, ” Advances in Engineering Software, vol. 114, pp. 246-257, 2017.
[38]邱泓維,智慧型加工專家系統:基於CNC控制器參數選擇與優化,國立中興大學機械工程研究所,碩士論文,2017。
[39]廖學佑,智慧化加工表面粗糙度預測模型及材料移除率最佳化研究-以塑膠射出成型模銑削為例,國立中興大學機械工程研究所,碩士論文,2015。
[40]Heidenhain Corporation, Dynamic precision-Machining Dynamically and with High Accuracy, Technical Information, 2013.
[41]https://www.okuma.co.jp/chinese/onlyone/servo-navi/index.html,OKUMA智能化技術。
[42]MAZAK Corporation, Smooth technology, Datasheet, 2016.
[43]K. Liu, C. Hou and W. Hua, “A novel inertia identification method and its application in PI controllers of PMSM drives,” IEEE Access, vol. 7, pp. 13445-13454, 2019.
[44]S. Kim, “A novel inertia identification method and its application in PI controllers of PMSM drives,” IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp.60-70, 2019.
[45]R. Garrido and A. Concha, “Inertia and friction estimation of a velocity-controlled servo using position measurements,” IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4759-4770, 2014.
[46]S. Jee and J. Lee, “Real-time inertia compensation for multi-axis CNC machine tools,” International Journal of Precision Engineering and Manufacturing, vol. 13, no. 9, pp.1655-1659, 2012.
[47]Y. Maeda, K. Harata and M. Iwasaki, “A friction model-based frequency response analysis for frictional servo systems,” IEEE Transactions on Industrial Informatics, vol. 14, no. 11, pp. 5146-5155, 2018.
[48]C. Canudas-de-Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A new model for control of systems with friction,” IEEE Transactions on Automatic Control, vol. 40, no. 3, pp. 419-425, 1995.
[49]C. Canudas-de-Wit, Comments on “A new model for control of systems with friction,” IEEE Transactions on Automatic Control, vol. 43, pp. 1189-1190, 1998
[50]F. J. T. Vargas, E. R. De Fieri, and E. B. Castelan, “Identification and friction compensation for an industrial robot using two degrees of freedom controllers,” in the 2004 International Conference on Control, Automation, Robotics and Vision, Kunming, China, Dec. 6-9, 2004.
[51]R. Kelly and J. Llamas, “Determination of viscous and coulomb friction by using velocity responses to torque ramp inputs,” in the 1999 IEEE International Conference on Robotics and Automation, Detroit, USA, May 10-15, 1999.
[52]T. Takemura and H. Fujimoto, “Simultaneous identification of linear parameters and nonlinear rolling friction for ball screw driven stage,” 37th Annual Conference on IEEE Industrial Electronics Society, Melbourne, Australia, Nov. 7-10, 2011.
[53]M. R. Popovic, D. M. Gorinevsky, and A. A. Goldenberg, “High-precision positioning of a mechanism with nonlinear friction using a fuzzy logic pulse controller,” IEEE Transactions on Control Systems Technology, vol. 8, no.1, pp. 151-158, 2000.
[54]Y. H. Kim and F. L. Lewis, “Reinforcement adaptive learning neural-net-based friction compensation control for high speed and precision,” IEEE Transactions on Control Systems Technology, vol. 8, no. 1, pp. 118-126, 2000.
[55]劉崇慶,進給系統之摩擦力參數鑑別與動態分析,國立中正大學機械工程研究所,碩士論文,2013。
[56]尤誌緯,LuGre摩擦力模型設計於CNC伺服馬達之微動高速精密運動控制,國立交通大學電控工程研究所,碩士論文,2013。
[57]劉佳怡,系統化調整CNC工具機之LuGre摩擦力補償模型參數,國立交通大學電控工程研究所,碩士論文,2016。
[58]Y. Maeda and M. Iwasaki, “Initial friction compensation using rheology-based rolling friction model in fast and precise positioning,” IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3865-3876, 2013.
[59]Y. Maeda and M. Iwasaki, Rolling friction model-based analyses and compensation for slow settling response in precise positioning, IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5841-5853, 2013.
[60]蔡孟勳、袁偉翔、王志偉、黃泓緯、劉崇慶,線性移動平台的摩擦力鑑別方法, 中華人民共和國發明專利,CN10503017A,2016。
[61]C.-C. Liu, M.-S. Tsai and C.-C. Cheng, “Development of a novel transmission engaging model for characterizing the friction behavior of a feed drive system,” Mechanism and Machine Theory, vol. 134, pp. 425-439, 2019.
[62]D. Zhang, Y. Niu, L. Sun and M. Tomizuka, “A position-based friction error model and its application to parameter identification,” IEEE Access, vol. 7, pp. 7759-7767, 2019.
[63]FANUC Corporation, AI Nano CNC for high-speed high-accuracy machining, FANUC Series 31i/32i/30i/35i-MODEL B, FANUC Series 31i-MODEL B5 – Datasheet, 2004.
[64]Siemens Corporation, SINUMERIK 840D/840Di/810D/FM-NC Programming Guide Advanced (PGA) 10.00 Edition, 2003.
[65]Heidenhain Corporation, iTNC530 NC Software 340 490-02, 491-02, 492-02, 493-02 – Technique Manual, 2006.
[66]林明宗,開發具有預視及學習功能之運動控制器,國立中正大學機械工程研究所,博士論文,2007。
[67]黃坤益,五軸刀具路徑插補及動態之研究與分析,國立虎尾科技大學機械設計工程研究所,碩士論文,2013。
[68]M.-T. Lin, C.-L. Yen, M.-S. Tsai, and H.-T. Yau, “Application of robust iterative learning algorithm in motion control system,” Mechatronics, vol. 23, no. 5, pp. 530-540, 2013.
[69]李孟哲,五軸刀具中心點路徑即時預讀與插補技術之研究,國立虎尾科技大學機械設計工程研究所,碩士論文,2016。
[70]M.-T. Lin and S.-K. Wu, “Modeling and improvement of dynamic contour errors for five-axis machine tools under synchronous measuring paths,” International Journal of Machine Tools and Manufacture, vol. 72, pp. 58-72, 2013.