1.Adams, B. M., Woodall, W. H. and Superville, C. R., “Discussion,” Technometrics, 36, 19-22 (1994).
2.Alt, F. B., “Multivariate quality control,” Encyclopedia of statistical science 6 (S. Kotz and N. L. Johnson, eds.), John Wiley & Sons, New York (1985).
3.Anderson, T. W., “An introduction to multivariate statistical analysis,” John Wiley & Sons, New York (1958).
4.Aparisi, F., Jabaloyes, J. and Carrion, A., “Statistical properties of the |S| multivariate control chart,” Cmms in Stics—simula., 30, 931-948 (2001).
5.Chang, S. I. and Aw, C. A., “A neural fuzzy control chart for detecting and classifying process means shifts,” International Journal of Production Research, 34, 2265-2278 (1996).
6.Chen, L. H. and Wang, T. Y., “Artificial neural networks to classify mean shifts from multivariate chart signals,” Computer & industrial engineering, 47, 195-205 (2004).
7.Cheng, C. S., “A multi-layer neural network model for detecting changes in the process mean,” Computers and Industrial Engineering, 28, 51-61 (1995).
8.Cheng, C. S. and Tzeng, C. A., “A neural network approach for detecting shifts in the process mean and variability,” Journal of the Chinese Institute of Industrial Engineers, 11, 67-75 (1994).
9.Dedeakayogullar, I. and Burnak, N., “The determination of mean and/or variance shifts with artificial neural networks,” International Journal of Production Research, 37, 2191-2200 (1999).
10.Gnanadesikan, M. and Gupta, S. S., Technometrics, 12, 103-117 (1970).
11.Guo, Y., and Dooley, K. J., “Identification of change structure in statistical process control,” International Journal of Production Research, 30, 1655-1669 (1992).
12.Ho, E. S. and Chang, S. I., “An integrated neural network approach for simultaneous monitoring of process mean and variance shifts-a comparative study,” International Journal of Production Research, 37, 1881-1901 (1999).
13.Hotelling, H., “Multivariate quality control-illustrated by the air testing of sample bombsights,” in Techniques of Statistical Analysis, eds. C. Eisenhart, M. W, Hastay and W. A. Wallis, New York : McGraw –Hill, 111-184, (1947).
14.Hunter, J. S., “The Exponentially Weighted Moving Average,” Journal of quality Technology, 18, 203-210 (1986).
15.Hush, D. R., Salas, J. M. and Horne, B. G., “Error surfaces for multi-layer perceptrons,” IEEE Transactions on System, Man and Cybernetics, 22, 1152-1161 (1992).
16.Hush, D. R. and Horne, B. G., “Progress in supervised neural network,” IEEE Signal Processing Magazine, 10, 8-39 (1993).
17.Korin, B. P., “On the distribution of a statistic used for testing a covariance matrix,” Biometrika, 55, 171-178 (1968).
18.Low, C. Y., Hsu, C. M. and Yu, F. J., “Analysis of variations in a multi-variate process using neural networks,” The International Journal of Advanced Manufacturing Technology, 22, 911-921 (2003).
19.Lowry, C. A., Woodall, W. H., Champ, C. W. and Rigdon, S. E., “A multivariate exponentially weighted moving average control chart,” Technometrics, 34, 46-53 (1992).
20.Lucas, J. M. “Combined Shewhart-CUSUM Quality Control Schemes,” Journal of Quality Technology, 14, 51-59, (1982).
21.Lucas, J. M., and Crosier, R. B., “Fast initial response for CUSUM quality- control schemes: give your CUSUM a head start,” Technometrics, 24, 199-205 (1982).
22.Montgomery, D. C. and Wadsworth, H. M., “Some techniques for multivariate quality control applications,” ASQC Technical Conference Transactions, Washington, D. C. (1972).
23.Montgomery, D. C., Introduction to Statistical Quality Control, Wiley, New York (1991).
24.Page, E. S., “Continuous inspection schemes,” Biometrika, 41, 100-115 (1954).
25.Pignatiello, J. J., Jr. and Runger, G.. C., “Comparisons of multivariate CUSUM Charts,” Journal of quality technology, 22, 173-186 (1990).
26.Pugh, G. A., “A comparison of neural networks to SPC charts,” Computers and Industrial Engineering, 21, 253-255 (1991).
27.Roberts, S. W., “Control chart tests based on geometric moving averages,” Technometrics, 1, 239-250 (1959).
28.Surtihadi, J., Raghavachari, M. and Runger, G., “Multivariate control charts for process dispersion,” International Journal of Production Research, 42, 2993-3009 (2004).
29.Wang, T. Y. and Chen, L. H. “Mean shifts detection and classification in multivariate process: a neural-fuzzy approach,” Journal of intelligent manufacturing, 13, 211-221 (2002).
30.Woodall, W. H. and Ncube, M. M., “Multivariate CUSUM Quality Control Procedures,” Technometrics, 27, 285-292 (1985).
31.Zorriassatine, F., Tannock, J.D.T. and O’Brien, C., “Using novelty detection to identify abnormalities caused by mean shifts in bivariate processes.,” Computer & industrial engineering, 44, 385-408 (2003).
32.李銘鈞,「以類神經網路偵測多變量製程變異性變化之管制程序」,元智大學工業工程與管理所碩士論文,1999。33.唐文彥,「類神經網路在多變量品質管制之研究」,大葉大學工業工程研究所碩士論文,1998。34.陳俊錫,「應用類神經網路偵測多變量製程變異性變化之研究」,元智大學工業工程與管理所碩士論文,1997。35.萬維君,「應用類神經網路於製程平均值變化之偵測及參數之估計」,元智大學工業工程與管理所碩士論文,2001。36.歐筱華,「類神經網路應用於多變量統計製程管制之研究」,元智大學工業工程與管理所碩士論文,1995。37.鍾政宏,「應用類神經網路偵測製程變異數變化之研究」,元智大學工業工程與管理所碩士論文,1995。