1. 劭光耀,「投資組合保險策略之績效─台灣股市之實證研究」,碩士論文,台灣大學商學研究所,1991。
2. 林錦誼,「探勘含重點項目集之關聯法則─以賣場資料為例」,碩士論文,元智大學資訊管理研究所,2001。3. 莊國志,「以基因演算法為基礎的網頁瀏覽集分叢技術之研究」,碩士論文,樹德科技大學資訊管理研究所,2002。4. 黃彥文,「資料探勘之應用 - 會員消費特徵之發掘」,碩士論文,屏東科技大學資訊管理研究所,1999。5. 賴耐志,「應用資料探勘於市場區隔分析」,碩士論文,台北科技大學商業自動化與管理研究所,2001。6. 闕嘉萱,「GMDH在顧客關係管理之應用與分析─以零售業之便利商店為例」,碩士論文,元智大學工業工程研究所,2000。7. Agrawal, R. and R. Srikant, “Fast Algorithms for Mining Association Rules,” Proc. 20th International Conf. on Very Large Databases, pp. 487-499, 1994.
8. Bass, F. M., D. J. Tigert and R. T. Lonsdale, “Market Segmentation: Group Versus Individual Behavior”, Journal of Marketing Research, Vol. 5, 1968.
9. Berson, A., K. Thearling and S. J. Smith, Building Data Mining Applications for CRM, McGraw-Hill Osborne Media, New York, 2000.
10. Blattberg, R. C. and S. K. Sen, “Market Segmentation Using Models of Multidimensional Purchasing Behavior,” Journal of Marketing, Vol. 38, pp. 17-28, 1974.
11. Boone, D. S. and M. Roehm, “Retail Segmentation Using Artificial Neural Networks,” International Journal of Research in Marketing, Vol. 19, pp. 287-301, 2002.
12. Bradley, P. S. and U. M. Fayyad, “Refining Initial Points for K-Means Clustering,” Proc. 15th International Conf. on Machine Learning, 1998.
13. Chen, L. D., T. Sakaguchi and M. N. Frolick, “Data Mining Methods, Applications, and Tools”, Information System Management, Vol. 17, No. 1, pp. 65-70, 2000.
14. Crosby, L. A. and S. L. Johnson, “Technology: Friend or Foe to Customer Relation?” Market Management, pp. 10-11, 2001.
15. Davies, D. L. and D. W. Bouldin, “A Clustering Separation Measure,” IEEE Transactions on Pattern Analysis and Machine Intelligent, Vol. 1, pp. 224-227, 1979.
16. Duda, R. O., P. E. Hart and D. G. Stork, Pattern Classification, 2nd Ed., Wiley, New York, 2001.
17. Han, J. and Y. Fu, “Mining Multiple-Level Association Rules in Large Databases,” IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 5, pp. 798-805, 1999.
18. Han, J. and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publisher, San Francisco, 2001.
19. Holland, J. H., Adaptation in Natural and Artificial System: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, Reprint edition, 1992.
20. Horita, Y., T. Murai and M. Miyahara, “Region segmentation using K-mean clustering and genetic algorithms,” IEEE International Conf. of Image Processing, Vol. 3, pp. 1016-1020, 1994.
21. Hughes, A., Strategic Database Marketing, Richard D. Irwin, Inc., Homewood, 1994.
22. Jain, A. K. and R. C. Dubes, Algorithms for Clustering Data, Advanced reference series. Prentice-Hall, Upper Saddle River, New York, 1998.
23. Kohonen, T., Self-Organization Maps, 3rd Ed., Springer Series in Information Sciences, Vol. 30, Springer, Berlin, Heidelberg, New York, 2001.
24. Ling, R. and D. C. Yen, “Customer Relationship Management Analysis Framework Strategies,” Journal of Computer Information System, pp. 82-96, 2001.
25. Liu, B., W. Hsu and Y. Ma, “Association Rules with Multiple Minimum Supports,” Proc. 5th International Conf. on Knowledge Discovery and Data Mining, pp. 337-341, 1999.
26. MacQueen, J., “Some Methods for Classification and Analysis of Multivariate Observations”, Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281-297, 1967.
27. Mannila, H., “Database Methods for Data Mining,” Proc. 4th International Conf. on Knowledge Discovery and Data Mining, New York, 1998.
28. Mao, J. and A. K. Jain, “Artificial Neural Networks for Feature Extraction and Multivariate Data Projection,” IEEE Transactions on Neural Networks, Vol. 6, No. 2, pp. 296-317, 1995.
29. Pang, L. M.G. and N. Robert, “Applying Customer Relationship Management to Government,” Journal of Government Financial Management, Vol. 51, pp. 40-45, 2002.
30. Peppers, D. and M. Rogers, The One to One Manager: Real-World Lessons in Customer Relationship Management, Wiley, New York, 2000.
31. Russell, S. and W. Lodwick, “Fuzzy Clustering in Data Mining for Telco Database Marketing Campaigns,” Proc. 18th International Conf. of Fuzzy Information Processing Society, pp. 720-726, 1999.
32. Sarafis, I., AMS Zalzala, and P. W. Trinder, “A Genetic Rule-Based Data Clustering Toolkit,” Congress on Evolutionary Computation (forthcoming), Honolulu, USA, 2002.
33. Shapiro, G. P. and W. J. Frawley, Knowledge Discovery in Database, AAAI/MIT Press, Menlo Park, CA, 1991.
34. Stone, B., Successful Direct Market Method, NTC Business Books, Richard D. Irwin, Inc. Lincolnwood, pp. 29-35, 1995.
35. Strehl, A. and J. Ghosh, “Relationship-Based Clustering and Visualization for High-Dimensional Data Mining,” Informs Journal on Computing, pp. 1-23, 2002.
36. Thearling, K., “An Introduction to Data Mining”,
http://www.thearling.com/dmintro/index_frame.htm
37. Wang, K., C. Xu and B. Liu, “Clustering Transactions Using Large Items,” ACM CIKM International Conf. on Information and Knowledge Management, pp. 483-490, 1999.