【1】L. Bahl, P. Brown, P de Souza, R. Merce, “Maximum Mutual Information Estimation Of Hidden Markov Model Parameters For Speech Recognition,” Proc. ICASSP, 1986.
【2】B.-H. Juang, W. Chou, C.-H Lee, “Minimum Classification Error Rate Methods For Speech Recognition,” IEEE Transactions on Speech and Audio Processing, 1997.
【3】D. Povey, P.C. Woodland, “Minimum Phone Error And I-smoothing For Improved Discriminative Training,” Proc. ICASSP, 2002.
【4】J. Zheng, A. Stolcke, “Improved Discriminative Training Using Phone Lattices,” Interspeech, 2005.
【5】J. Du, P. Liu, F. K. Soong, J.-L. Zhou, R.-H. Wang, “Minimum Divergence Based Discriminative Training,” Interspeech, 2006.
【6】L.R. Rabiner, “A tutorial on Hidden Markov Models and selected applications in speech recognition,” Proc. IEEE, Vol.77, No.2, pp.257–285, 1989
【7】L.R. Bahl, F. Jelinek, R. L. Mercer, “A Maximum Likelihood Approach to Continuous Speech Recongnition,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No.2, pp.179–190, 1983
【8】V. Goel, S. Kumar, W. Byrne, “Segmental Minimum Bayes-Risk Decoding for Automatic Speech Recognition,” IEEE Trans. Speech and Audio Processing, 2004
【9】L. Mangu, E. Brill, A. Stolcke, “Finding Consensus in Speech Recognition: Word Error Minimization and Other Applications of Confusion Nerworks,” Computer Speech and Language, 2004
【10】P. F. Brown “The Acoustic-Modeling Problem in Automatic Speech Recognition,” Ph.D Dissertation, Carnegie Mellon University, Pittsburg, 1987.
【11】P. S. Gopalakrishnan, D. Kanevsky, A. Nádas & D. Nahamoo “An Inequality for Rational Functions with Applications to Some Statistical Estimation Problems,” IEEE Trans. Information Theory, Vol. 37, pp.107-113, 1991.
【12】Y. Normandin. “Hidden Markov Models, Maximum Mutual Information Estimation, and the Speech Recognition Problem,” Ph.D Dissertation, McGill University, Montreal, 1991.
【13】V. Valtchev, J. J. Odell, P. C. Woodland, S. J. Young. (1997). “MMIE Training of Large Vocabulary Recognition Systems,” Speech Communication, Vol. 22, No. 4, pp.303-314, September 1997.
【14】P. C. Woodland and D. Povey (2002). “Large Scale Discriminative Training of Hidden Markov Models for Speech Recognition,” Computer Speech and Language, Vol. 16, pp.25-47, 2002.
【15】Wikipedia, Levenshtein distance,
http://en.wikipedia.org/wiki/Levenshtein_distance
【16】J. Kaiser, B. Horvat, Z. Kacic “Overall Risk Criterion Estimation of Hidden Markov Model Parameters,” Speech Communication, Vol. 38, pp.383-398, 2002.
【17】B.-H. Juang and S. Katagiri “Discriminative Learning for Minimum Error Classification,” IEEE Trans. Signal Processing, Vol. 40, No. 12, pp. 3043-3054, 1992.
【18】W. Chou, C.-H. Lee, B.-H. Juang (1993). “Minimum Error Rate Training based on N-Best String Models,” Proc. ICASSP, 1993.
【19】L. K. Saul and M. G. Rahim “Maximum Likelihood and Minimum Classification Error Factor Analysis for Automatic Speech Recognition,” IEEE Trans. Acoustics, Speech and Signal Processing, Vol. 8, No. 2, pp. 115-125, March 2000.
【20】R. Schlüter. “Investigations on Discriminative Training Criteria,” Ph.D Dissertation, RWTH Aachen University of Technology, 2000.
【21】H.-M. Wang, B. Chen, J.-W. Kuo, and S.-S Cheng “MATBN: A Mandarin Chinese Broadcast News Corpus,” Interational Journal of Computational Linguistics and Chinese Language Processing, 2005
【22】Cambridge University Engineering Dept. (CUED), Machine Intelligence Laboratory, “HTK,” http://htk.eng.cam.ac.uk/
【23】SRI Speech Technology and Research Laboratory, “SRILM,”
http://www.speech.sri.com/projects/srilm/
【24】潘奕誠,『大字彙中文連續語音辨認之一段式及以詞圖為基礎之搜尋演算法』,碩士論文,國立台灣大學資訊工程研究所,2002【25】X. Huang, A. Acero, H.-W. Hon, “Spoken Language Processing,” Pearson Education Taiwan Ltd., pp. 424-426, 2005
【26】S. Furui, “Cepstral analysis technique for automatic speaker verification,” IEEE Trans. Acoustics, Speech and Signal Processing, Vol.29, No.2, pp. 254-272, 1981.
【27】S. M. Katz. “Estimation of Probabilities from Sparse Data for Other Language Component of a Speech Recognizer,” IEEE Trans. Acoustics, Speech and Signal Processing, Vol.35, No.3, pp.400-401, 1987.
【28】郭人瑋,『最小化音素錯誤鑑別式聲學模型學習於中文大詞彙連續語音辨識之初步研究』,碩士論文,國立台灣師範大學資訊工程研究所,2005【29】陳佳妤,『最小化音素錯誤模型及特徵訓練法於中文大詞彙辨識上之初步研究』,碩士論文,國立台灣大學電信工程研究所,2006【30】D. Povey. “Discriminative Training for Large Vocabulary Speech Recognition,” Ph.D Dissertation, Peterhouse, University of Cambridge, 2004.
【31】X. L. Aubert “An Overview of Decoding Techniques for Large Vocabulary Continuous Speech Recognition, “ Computer Speech and Language, 2002
【32】D. Povey, B. Kingsbury, “Evaluation of Proposed Modifications to MPE for Large Scale Discriminative Training,” Proc. ICASSP, 2007.
【33】S.-H. Liu, F.-H. Chu, S.-H. Lin, B. Chen, “Investigation Data Selection for Minimum Phone Error Training of Acoustic Models,” Proc. ICME, 2007.
【34】M. Gibson, T. Hain, “Hypothesis Spaces for Minimum Bayes Risk Training in Large Vocabulary Speech Recognition,” Interspeech, 2006.
【35】Wikipedia, Multivariate normal distribution,
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#Kullback-Leibler_divergence
【36】蔡明怡,『國語語音之發音變異分析及提昇辨識效能之發音模型』,博士論文,國立台灣大學電信工程研究所,2006【37】X. Li, H. Jiang, C. Liu, “Larginn Margin HMMs for Speech Recognition,” ICASSP, 2005
【38】Wikipedia, Support vector machine,
http://en.wikipedia.org/wiki/Support_vector_machine
【39】DTREG, Software For Predictive Modeling and Forecasting, SVM - Support Vector Machines, http://www.dtreg.com/svm.htm
【40】S.-H. Liu, F.-H. Chu, S.-H. Lin, H.-S. Lee, B. Chen, “Training Data Selection for Improving Discriminative Training of Acoustic Models,” ASRU, 2007.
【41】朱芳輝,『資料選取方法於鑑別式聲學模型訓練之研究』,碩士論文,國立台灣師範大學資訊工程研究所,2008【42】H. Jiang, X. Li, C. Liu, “Large Margin Hidden Markov Models for Speech Recognition,” IEEE Trans. Acoustics, Speech and Signal Processing, Vol.14, No.5, pp. 1584-1595, 2006.
【43】F. Sha, L. K. Saul, “Comparison of Large Margin Training to Other Discriminative Methods for Phonetic Recognition by Hidden Markov Models,” ICASSP, 2007
【44】J. Li, M. Yuan, C.-H. Lee, “Soft Margin Estimation of Hidden Markov Model Parameters,” Interspeech, 2006.
【45】D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Soan, K. Visweswariah, “Boosted MMI for Model and Feature- Space Discriminative Training,” ICASSP, 2008