|
[1] R. Ford. Beware rise of big brother state, warns data watchdog. 2004. [2] These glimpses of a possible future are taken from section c of the full report, which also includes a full week in the life of a typical family. 2006. [3] M. McCahill and C. Norris. Estimating the extent, sophistication and legality of cctv in london. 2003. [4] Norris C. and Armstrong G. The maximum surveillance society: The rise of closed circuit television. page 42, 1999. [5] G. Welch and G. Bishop. An introduction to the kalman lter. University of North Carolina at Chapel Hill, Chapel Hill, NC, 7(1), 1995. [6] Q. Fu and M. Santello. Tracking whole hand kinematics using extended kalman Filter. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pages 4606{4609. IEEE, 2010. [7] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean shift. In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 2, pages 142{149. IEEE, 2000. [8] A. Rav-Acha, Y. Pritch, and S. Peleg. Making a long video short: Dynamic video synopsis. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages 435{441. IEEE, 2006. [9] Y. Pritch, S. Ratovitch, A. Hendel, and S. Peleg. Clustered synopsis of surveillance video. In Advanced Video and Signal Based Surveillance, 2009. AVSS'09. Sixth IEEE International Conference on, pages 195{200. IEEE, 2009. [10] Y. Pritch, A. Rav-Acha, A. Gutman, and S. Peleg. Webcam synopsis: Peeking around the world. In Computer Vision,2007. ICCV 2007. IEEE 11th International Conference on, pages 1{8. IEEE, 2007. [11] Y. Pritch, A. Rav-Acha, and S. Peleg. Nonchronological video synopsis and indexing. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(11):1971{1984,2008. [12] A. Van de Sande. Figure from: http://en.wikipedia.org/wiki/image:color cons.png , conversion from: http://en.wikipedia.org/wiki/hsl color space, 2005. [13] L.M. Brown. Color retrieval for video surveillance. In Advanced Video and Signal Based Surveillance, 2008. AVSS'08. IEEE Fifth International Conference on, pages 283{290. IEEE, 2008. [14] D.C. Tseng and C.H. Chang. Color segmentation using perceptual attributes. In Pattern Recognition, 1992. Vol. III. Conference C: Image, Speech and Signal Analysis, Proceedings., 11th IAPR International Conference on, pages 228{231. IEEE, 1992. [15] J.L. Shih and C.H. Chen. Video object retrieval using color features. Proc. International MultiConference of Engineers and Computer Scientists (IMECS, pages 568{573, 2006. [16] J. Lee, W. Tong, A. Jain, et al. Image retrieval in forensics: Application to tattoo image database. Multimedia, IEEE, (99):1{1, 2012. [17] W. Hai-long and D. Jun-li. Research on clothing image retrieval technology and system. In Computer Network and Multimedia Technology, 2009. CNMT 2009. International Symposium on, pages 1{3. IEEE, 2009. [18] G. Paschos, I. Radev, and N. Prabakar. Image content-based retrieval using chromaticity moments. Knowledge and Data Engineering, IEEE Transactions on, 15(5):1069{1072, 2003. [19] K. Vu, K.A. Hua, and W. Tavanapong. Image retrieval based on regions of interest. Knowledge and Data Engineering, IEEE Transactions on, 15(4):1045{1049, 2003. [20] J.F. Omhover and M. Detyniecki. Strict: an image retrieval platform for queries based on regional content. Image and Video Retrieval, pages 2034{2035, 2004. [21] C. Taskiran, J.Y. Chen, A. Albiol, L. Torres, C.A. Bouman, and E.J. Delp. Vibe: A compressed video database structured for active browsing and search. Multimedia, IEEE Transactions on, 6(1):103{118, 2004. [22] I. Decker. A picture-based document retrieval service for the electronic visualization library. Technical report, Technical Report, 1998. [23] V. Mezaris, I. Kompatsiaris, N.V. Boulgouris, and M.G. Strintzis. Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval. Circuits and Systems for Video Technology, IEEE Transactions on, 14(5):606{621, 2004. [24] V. Mezaris and M. Strintzis. Object segmentation and ontologies for mpeg-2 video indexing and retrieval. Image and Video Retrieval, pages 643{643, 2004. [25] M. Ramesh Naphade, I.V. Kozintsev, and T.S. Huang. Factor graph framework for semantic video indexing. Circuits and Systems for Video Technology, IEEE Transactions on, 12(1):40{52, 2002. [26] M.R. Naphade, S. Basu, J.R. Smith, C.Y. Lin, and B. Tseng. Modeling semantic concepts to support query by keywords in video. In Image Processing. 2002. Proceedings. 2002 International Conference on, volume 1, pages I{145. IEEE, 2002. [27] M.R. Naphade, T. Kristjansson, B. Frey, and T.S. Huang. Probabilistic multimedia objects (multijects): A novel approach to video indexing and retrieval in multimedia systems. In Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on, pages 536{540. IEEE, 1998. [28] S.F. Cheng, W. Chen, and H. Sundaram. Semantic visual templates: linking visual features to semantics. In Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on, pages 531{535. IEEE, 1998. [29] R. Qian, N. Haering, and I. Sezan. A computational approach to semantic event detection. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., volume 1. IEEE, 1999. [30] B. Erol and F. Kossentini. Shape-based retrieval of video objects. Multimedia, IEEE Transactions on, 7(1):179{182, 2005. [31] E. Oomoto and K. Tanaka. Ovid: Design and implementation of a video-object database system. Knowledge and Data Engineering, IEEE Transactions on, 5(4):629{643, 1993. [32] D. Zhong and S.F. Chang. An integrated approach for content-based video object segmentation and retrieval. Circuits and Systems for Video Technology, IEEE Transactions on, 9(8):1259{1268, 1999. [33] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 1470{1477. Ieee, 2003. [34] J. Sivic, F. Scha alitzky, and A. Zisserman. E cient object retrieval from videos.In Proc. of the 12th European Signal Processing Conference EUSIPCO 04, Vienna,Austria, 2004. [35] M.M. Deza and E. Deza. Encyclopedia of distances. Springer Verlag, 2009.
|