|
[1] G. Jing, C. E. Siong, and D. Rajan. Foreground motion detection by difference-based spatial temporal entropy image. IEEE Region 10 Conference Proceedings: Analog and Digital Techniques in Electrical Engineering, pages 379–382, 2004. [2] A. J. Lipton, H. Fujiyoshi, and R. S. Patil. Moving target classification and tracking from real-time video. Applications of Computer Vision, 1998. WACV’98. Proceedings., Fourth IEEE Workshop on, pages 8–14, 1998. [3] O. Masoud and N. P. Papanikolopoulos. A novel method for tracking and counting pedestrians in real-timeusing a single camera. IEEE Transactions on Vehicular Technology, 50(5):1267–1278, 2001. [4] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee. Using adaptive tracking to classify and monitor activities in asite. Computer Vision and Pattern Recognition, 1998. Proceedings. 1998 IEEE Computer Society Conference on, pages 22–29, 1998. [5] I. Haritaoglu, D. Harwood, and L. S. Davis. W4: Real-Time Surveillance of People and Their Activities. 2000. [6] C. Kim and J.-N. Hwang. Fast and automatic video object segmentation and tracking forcontent-based applications. IEEE Transactions on Circuits and Systems for Video Technology, 12(2):122–129, 2002. [7] E. Stringa and C. S. Regazzoni. Real-time video-shot detection for scene surveillance applications. IEEE Transactions on Image Processing, 9(1):69–79, 2000. [8] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland. Pfinder: Real-Time Tracking of the Human Body. 1997. [9] C. Stauffer and W.E.L. Grimson. Adaptive background mixture models for real-time tracking. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2:246–252, 1999. [10] A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE, 90(7):1151–1163, 2002. [11] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: principles and practice of background maintenance. Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, 1, 1999. [12] A. Monnet, A. Mittal, N. Paragios, R. T. Vision, S. C. R. Modeling, and N. J. Princeton. Background modeling and subtraction of dynamic scenes. Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 1305–1312, 2003. [13] J. Zhong and S. Sclaroff. Segmenting foreground objects from a dynamic textured background via a robust Kalman filter. Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 44–50, 2003. [14] T. J. Broida and R. Chellappa. Estimation of object motion parameters from noisy images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1):90–99, 1986. [15] R. Rosales and S. Sclaroff. 3 D trajectory recovery for tracking multiple objects and trajectory guided recognition of actions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2:117–123, 1999. [16] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-Based Object Tracking. 2003. [17] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi. Robust Online Appearance Models for Visual Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1296–1311, 2003. [18] H. Tao, H. S. Sawhney, and R. Kumar. Object Tracking with Bayesian Estimation of Dynamic Layer Representations. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 75–89, 2002. [19] J. Kang, I. Cohen, and G. Medioni. Object reacquisition using geometric invariant appearance model. International Conference on Pattern Recongnition (ICPR), pages 759–762, 2004. [20] V. Salari and I. K. Sethi. Feature point correspondence in the presence of occlusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):87–91, 1990. [21] C. J. Veenman, M. J. T. Reinders, and E. Backer. Resolving Motion Correspondence for Densely Moving Points. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 54–72, 2001. [22] T. H. Chang, S. Gong, and E. J. Ong. Tracking multiple people under occlusion using multiple cameras. Proc. 11th British Machine Vision Conference, 2000. [23] S. L. Dockstader and A. M. Tekalp. Multiple camera fusion for multi-object tracking. Proc. IEEE Workshop on Multi-Object Tracking, pages 95–102, 2001. [24] S. Khan and M. Shah. Tracking people in presence of occlusion. Asian Conference on Computer Vision, 5, 2000. [25] H. Roh, S. Kang, and S. W. Lee. Multiple people tracking using an appearance model based on temporal color. Proc. International Conference on Pattern Recognition, 4:643–646, 2000. [26] D. Beymer and K. Konolige. Real-time tracking of multiple people using continuous detection. IEEE Frame Rate Workshop, 1999. [27] M. Isard and J. MacCormick. BraMBLe: A Bayesian multiple-blob tracker. International Conference on Computer Vision, 2(5), 2001. [28] P. KaewTraKulPong and R. Bowden. An improved adaptive background mixture model for real-time tracking with shadow detection. Proc. 2nd European Workshop on Advanced Video Based Surveillance Systems (AVBS01), 2001. [29] R. C. Gonzalez and R. E. Woods. Digital Image Processing 2/e. Prentice Hall, 2002. [30] C. E. Erdem, A. M. Tekalp, and B. Sankur. Video object tracking with feedback of performance measures. IEEE Transactions on Circuits and Systems for Video Technology, 13(4):310–324, 2003. [31] H. Luo and A. Eleftheriadis. Model-based segmentation and tracking of head-andshoulder video objects for real time multimedia services. IEEE Transactions on Multimedia, 5(3):379–389, 2003. [32] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1):35–45, 1960. [33] D.-T. Lin and H.-C. Lee. Intelligent surveillance system for halt detection and people counting. Journal of Information Technology and Applications, 2(3):133–142, 2008. [34] G. Borgefors. Hierarchical chamfer matching: a parametric edge matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):849–865, 1988. [35] T. Koga, K. Linuma, A. Hirano, Y. Lijima, and T. Ishiguro. Motion compensated interframe coding for video conferencing. In Nat. Telecommun. Conf., pages G5.3.1–G5.3.5, New Orleans, La, USA, Dec. 1981. [36] http://archer.ee.nctu.edu.tw/contest/index.htm. [37] L.R. Dice. Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3):297–302, 1945. [38] http://www.cvg.cs.rdg.ac.uk/PETS2001/pets2001~dataset.html. [39] A. Senior, A. Hampapur, Y. L. Tian, L. Brown, S. Pankanti, and R. Bolle. Appearance models for occlusion handling. Image and Vision Computing, 24(11):1233–1243, 2006.
|