|
[1]G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, et al., "Silver nanoparticles as potential antibacterial agents," Molecules, vol. 20, pp. 8856-8874, 2015. [2]A. B. Lansdown, "Silver in health care: antimicrobial effects and safety in use," Curr Probl Dermatol, vol. 33, pp. 17-34, 2006. [3]B. S. Atiyeh, M. Costagliola, S. N. Hayek, and S. A. Dibo, "Effect of silver on burn wound infection control and healing: review of the literature," Burns, vol. 33, pp. 139-48, 2007. [4]Y. Huang, X. Li, Z. Liao, G. Zhang, Q. Liu, J. Tang, et al., "A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis," Burns, vol. 33, pp. 161-6, 2007. [5]J. B. Wright, K. Lam, A. G. Buret, M. E. Olson, and R. E. Burrell, "Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing," Wound Repair Regen, vol. 10, pp. 141-51, 2002. [6]K. Chaloupka, Y. Malam, and A. M. Seifalian, "Nanosilver as a new generation of nanoproduct in biomedical applications," Trends Biotechnol, vol. 28, pp. 580-8, 2010. [7]S. Chernousova and M. Epple, "Silver as antibacterial agent: ion, nanoparticle, and metal," Angewandte Chemie International Edition, vol. 52, pp. 1636-1653, 2013. [8]S. Kittler, C. Greulich, J. S. Gebauer, J. Diendorf, L. Treuel, L. Ruiz, et al., "The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles," Journal of Materials Chemistry, vol. 20, pp. 512-518, 2010. [9]L. Ge, Q. Li, M. Wang, J. Ouyang, X. Li, and M. M. Xing, "Nanosilver particles in medical applications: synthesis, performance, and toxicity," Int J Nanomedicine, vol. 9, pp. 2399-407, 2014. [10]Y. K. Jo, J. H. Seo, B. H. Choi, B. J. Kim, H. H. Shin, B. H. Hwang, et al., "Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue," ACS Appl Mater Interfaces, vol. 6, pp. 20242-53, 2014. [11]T. Bartlomiejczyk, A. Lankoff, M. Kruszewski, and I. Szumiel, "Silver nanoparticles -- allies or adversaries?," Ann Agric Environ Med, vol. 20, pp. 48-54, 2013. [12]M. Rai, K. Kon, A. Ingle, N. Duran, S. Galdiero, and M. Galdiero, "Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects," Appl Microbiol Biotechnol, vol. 98, pp. 1951-61, 2014. [13]X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu, "Role of citric acid in the formation of silver nanoplates through a synergistic reduction approach," Langmuir, vol. 26, pp. 4400-8, 2010. [14]L. C. Courrol, F. R. de Oliveira Silva, and L. Gomes, "A simple method to synthesize silver nanoparticles by photo-reduction," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 305, pp. 54-57, 2007. [15]R. Sato-Berrú, R. Redón, A. Vázquez-Olmos, and J. M. Saniger, "Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy," Journal of Raman Spectroscopy, vol. 40, pp. 376-380, 2009. [16]H. Huang, Q. Yuan, and X. Yang, "Preparation and characterization of metal-chitosan nanocomposites," Colloids Surf B Biointerfaces, vol. 39, pp. 31-7, 2004. [17]K. P. Bankura, D. Maity, M. M. Mollick, D. Mondal, B. Bhowmick, M. K. Bain, et al., "Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium," Carbohydr Polym, vol. 89, pp. 1159-65, 2012. [18]Y. F. Huang, K. M. Huang, and H. T. Chang, "Synthesis and characterization of Au core-Au-Ag shell nanoparticles from gold seeds: impacts of glycine concentration and pH," J Colloid Interface Sci, vol. 301, pp. 145-54, 2006. [19]S. Si and T. K. Mandal, "Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study," Chemistry, vol. 13, pp. 3160-8, 2007. [20]N. A. Begum, S. Mondal, S. Basu, R. A. Laskar, and D. Mandal, "Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts," Colloids Surf B Biointerfaces, vol. 71, pp. 113-8, 2009. [21]A. K. Mittal, Y. Chisti, and U. C. Banerjee, "Synthesis of metallic nanoparticles using plant extracts," Biotechnol Adv, vol. 31, pp. 346-56, 2013. [22]V. K. Sharma, R. A. Yngard, and Y. Lin, "Silver nanoparticles: green synthesis and their antimicrobial activities," Adv Colloid Interface Sci, vol. 145, pp. 83-96, 2009. [23]H. Goesmann and C. Feldmann, "Nanoparticulate functional materials," Angewandte Chemie International Edition, vol. 49, pp. 1362-1395, 2010. [24]Q. Zhang, J. Ge, T. Pham, J. Goebl, Y. Hu, Z. Lu, et al., "Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability," Angewandte Chemie International Edition, vol. 48, pp. 3516-3519, 2009. [25]M. Jose Ruben, E. Jose Luis, C. Alejandra, H. Katherine, B. K. Juan, R. Jose Tapia, et al., "The bactericidal effect of silver nanoparticles," Nanotechnology, vol. 16, p. 2346, 2005. [26]W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park, "Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli," Appl Environ Microbiol, vol. 74, pp. 2171-8, 2008. [27]W. Yang, C. Shen, Q. Ji, H. An, J. Wang, Q. Liu, et al., "Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA," Nanotechnology, vol. 20, p. 085102, 2009. [28]M. Yamanaka, K. Hara, and J. Kudo, "Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis," Appl Environ Microbiol, vol. 71, pp. 7589-93, 2005. [29]S. Siddhartha, B. Tanmay, R. Arnab, S. Gajendra, P. Ramachandrarao, and D. Debabrata, "Characterization of enhanced antibacterial effects of novel silver nanoparticles," Nanotechnology, vol. 18, p. 225103, 2007. [30]I. Sondi and B. Salopek-Sondi, "Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria," J Colloid Interface Sci, vol. 275, pp. 177-82, 2004. [31]H. J. Park, J. Y. Kim, J. Kim, J. H. Lee, J. S. Hahn, M. B. Gu, et al., "Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity," Water Res, vol. 43, pp. 1027-32, 2009. [32]C. Carlson, S. M. Hussain, A. M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones, et al., "Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species," J Phys Chem B, vol. 112, pp. 13608-19, 2008. [33]S. Silver, "Bacterial silver resistance: molecular biology and uses and misuses of silver compounds," FEMS Microbiol Rev, vol. 27, pp. 341-53, 2003. [34]M. Moritz and M. Geszke-Moritz, "The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles," Chemical Engineering Journal, vol. 228, pp. 596-613, 2013. [35]Z. M. Xiu, J. Ma, and P. J. Alvarez, "Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions," Environ Sci Technol, vol. 45, pp. 9003-8, 2011. [36]F. Martinez-Gutierrez, E. P. Thi, J. M. Silverman, C. C. de Oliveira, S. L. Svensson, A. Vanden Hoek, et al., "Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles," Nanomedicine, vol. 8, pp. 328-36, 2012. [37]Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. Alvarez, "Negligible particle-specific antibacterial activity of silver nanoparticles," Nano Lett, vol. 12, pp. 4271-5, 2012. [38]R. Gottesman, S. Shukla, N. Perkas, L. A. Solovyov, Y. Nitzan, and A. Gedanken, "Sonochemical coating of paper by microbiocidal silver nanoparticles," Langmuir, vol. 27, pp. 720-6, 2011. [39]H. Barani, M. Montazer, N. Samadi, and T. Toliyat, "In situ synthesis of nano silver/lecithin on wool: enhancing nanoparticles diffusion," Colloids Surf B Biointerfaces, vol. 92, pp. 9-15, 2012. [40]R. K. Dutta, B. P. Nenavathu, M. K. Gangishetty, and A. V. Reddy, "Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation," Colloids Surf B Biointerfaces, vol. 94, pp. 143-50, 2012. [41]J. L. Liu, Z. Luo, and S. Bashir, "A progressive approach on inactivation of bacteria using silver-titania nanoparticles," Biomaterials Science, vol. 1, pp. 194-201, 2013. [42]W. R. Li, X. B. Xie, Q. S. Shi, S. S. Duan, Y. S. Ouyang, and Y. B. Chen, "Antibacterial effect of silver nanoparticles on Staphylococcus aureus," Biometals, vol. 24, pp. 135-41, 2011. [43]E. Chadeau, C. Brunon, P. Degraeve, D. Leonard, C. Grossiord, F. Bessueille, et al., "Evaluation of antimicrobial activity of a polyhexamethylène biguanide-coated textile by monitoring both baterial growth (ISO 20743/2005 Standard) and viability (live/dead baclight kit)," Journal of Food Safety, vol. 32, pp. 141-151, 2012. [44]X. Chen and H. J. Schluesener, "Nanosilver: a nanoproduct in medical application," Toxicol Lett, vol. 176, pp. 1-12, 2008. [45]M. Andara, A. Agarwal, D. Scholvin, R. A. Gerhardt, A. Doraiswamy, C. Jin, et al., "Hemocompatibility of diamondlike carbon–metal composite thin films," Diamond and Related Materials, vol. 15, pp. 1941-1948, 2006. [46]H. Ghanbari, H. Viatge, A. G. Kidane, G. Burriesci, M. Tavakoli, and A. M. Seifalian, "Polymeric heart valves: new materials, emerging hopes," Trends Biotechnol, vol. 27, pp. 359-67, 2009. [47]U. Samuel and J. P. Guggenbichler, "Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter," Int J Antimicrob Agents, vol. 23 Suppl 1, pp. S75-8, 2004. [48]D. Roe, B. Karandikar, N. Bonn-Savage, B. Gibbins, and J. B. Roullet, "Antimicrobial surface functionalization of plastic catheters by silver nanoparticles," J Antimicrob Chemother, vol. 61, pp. 869-76, 2008. [49]K. Galiano, C. Pleifer, K. Engelhardt, G. Brossner, P. Lackner, C. Huck, et al., "Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages," Neurol Res, vol. 30, pp. 285-7, 2008. [50]P. Lackner, R. Beer, G. Broessner, R. Helbok, K. Galiano, C. Pleifer, et al., "Efficacy of silver nanoparticles-impregnated external ventricular drain catheters in patients with acute occlusive hydrocephalus," Neurocrit Care, vol. 8, pp. 360-5, 2008. [51]V. Alt, T. Bechert, P. Steinrucke, M. Wagener, P. Seidel, E. Dingeldein, et al., "An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement," Biomaterials, vol. 25, pp. 4383-91, 2004. [52]R. G. Sibbald, J. Contreras-Ruiz, P. Coutts, M. Fierheller, A. Rothman, and K. Woo, "Bacteriology, inflammation, and healing: a study of nanocrystalline silver dressings in chronic venous leg ulcers," Adv Skin Wound Care, vol. 20, pp. 549-58, 2007. [53]J. Chen, C. M. Han, X. W. Lin, Z. J. Tang, and S. J. Su, "[Effect of silver nanoparticle dressing on second degree burn wound]," Zhonghua Wai Ke Za Zhi, vol. 44, pp. 50-2, 2006. [54]E. Vlachou, E. Chipp, E. Shale, Y. T. Wilson, R. Papini, and N. S. Moiemen, "The safety of nanocrystalline silver dressings on burns: a study of systemic silver absorption," Burns, vol. 33, pp. 979-85, 2007. [55]J. Asz, D. Asz, R. Moushey, J. Seigel, S. B. Mallory, and R. P. Foglia, "Treatment of toxic epidermal necrolysis in a pediatric patient with a nanocrystalline silver dressing," J Pediatr Surg, vol. 41, pp. e9-12, 2006. [56]J. Y. Yang, C. Y. Huang, S. S. Chuang, and C. C. Chen, "A clinical experience of treating exfoliative wounds using nanocrystalline silver-containing dressings (Acticoat)," Burns, vol. 33, pp. 793-7, 2007. [57]P. L. Nadworny, J. Wang, E. E. Tredget, and R. E. Burrell, "Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model," Nanomedicine, vol. 4, pp. 241-51, 2008. [58]P. M. Castillo, J. L. Herrera, R. Fernandez-Montesinos, C. Caro, A. P. Zaderenko, J. A. Mejias, et al., "Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by Toll-like receptor ligands," Nanomedicine (Lond), vol. 3, pp. 627-35, 2008. [59]W. Boucher, J. M. Stern, V. Kotsinyan, D. Kempuraj, D. Papaliodis, M. S. Cohen, et al., "Intravesical nanocrystalline silver decreases experimental bladder inflammation," J Urol, vol. 179, pp. 1598-602, 2008. [60]R. B. Ahuja, A. Gupta, and R. Gur, "A prospective double-blinded comparative analysis of framycetin and silver sulphadiazine as topical agents for burns: a pilot study," Burns, vol. 35, pp. 672-6, 2009. [61]R. Bayston, W. Ashraf, and L. Fisher, "Prevention of infection in neurosurgery: role of "antimicrobial" catheters," J Hosp Infect, vol. 65 Suppl 2, pp. 39-42, 2007. [62]J. Jain, S. Arora, J. M. Rajwade, P. Omray, S. Khandelwal, and K. M. Paknikar, "Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use," Mol Pharm, vol. 6, pp. 1388-401, 2009. [63]A. Kumar, P. K. Vemula, P. M. Ajayan, and G. John, "Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil," Nat Mater, vol. 7, pp. 236-41, 2008. [64]G. Gravante, R. Caruso, R. Sorge, F. Nicoli, P. Gentile, and V. Cervelli, "Nanocrystalline silver: a systematic review of randomized trials conducted on burned patients and an evidence-based assessment of potential advantages over older silver formulations," Ann Plast Surg, vol. 63, pp. 201-5, 2009. [65]C. A. Impellitteri, T. M. Tolaymat, and K. G. Scheckel, "The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution," J Environ Qual, vol. 38, pp. 1528-30, 2009. [66]L. Reijnders, "Cleaner nanotechnology and hazard reduction of manufactured nanoparticles," Journal of Cleaner Production, vol. 14, pp. 124-133, 2006. [67]M. Ahamed, M. S. Alsalhi, and M. K. Siddiqui, "Silver nanoparticle applications and human health," Clin Chim Acta, vol. 411, pp. 1841-8, 2010. [68]Y.-S. Lin, C.-H. Yang, C.-Y. Wang, F.-R. Chang, K.-S. Huang, and W.-C. Hsieh, "An aluminum microfluidic chip fabrication using a convenient micromilling process for fluorescent poly (DL-lactide-co-glycolide) microparticle generation," Sensors, vol. 12, p. 1455, 2012. [69]Y. H. Hsin, C. F. Chen, S. Huang, T. S. Shih, P. S. Lai, and P. J. Chueh, "The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells," Toxicol Lett, vol. 179, pp. 130-9, 2008. [70]S. M. Hussain, K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager, "In vitro toxicity of nanoparticles in BRL 3A rat liver cells," Toxicol In Vitro, vol. 19, pp. 975-83, 2005. [71]L. Braydich-Stolle, S. Hussain, J. J. Schlager, and M. C. Hofmann, "In vitro cytotoxicity of nanoparticles in mammalian germline stem cells," Toxicol Sci, vol. 88, pp. 412-9, 2005. [72]Y. S. Kim, J. S. Kim, H. S. Cho, D. S. Rha, J. M. Kim, J. D. Park, et al., "Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats," Inhal Toxicol, vol. 20, pp. 575-83, 2008. [73]K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. H. Xu, "In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos," ACS Nano, vol. 1, pp. 133-43, 2007. [74]P. V. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, "Cytotoxicity and genotoxicity of silver nanoparticles in human cells," ACS Nano, vol. 3, pp. 279-90, 2009. [75]J. P. Sterling, "Silver-resistance, allergy, and blue skin: truth or urban legend?," Burns, vol. 40 Suppl 1, pp. S19-23, 2014. [76]S. D. Humphreys and P. A. Routledge, "The toxicology of silver nitrate," Adverse Drug React Toxicol Rev, vol. 17, pp. 115-43, 1998. [77]M. A. Kath, J. W. Shupp, S. E. Matt, J. D. Shaw, L. S. Johnson, A. R. Pavlovich, et al., "Incidence of methemoglobinemia in patients receiving cerium nitrate and silver sulfadiazine for the treatment of burn wounds: a burn center''s experience," Wound Repair Regen, vol. 19, pp. 201-4, 2011. [78]A. Wadhera and M. Fung, "Systemic argyria associated with ingestion of colloidal silver," Dermatol Online J, vol. 11, p. 12, 2005. [79]M. E. Samberg, S. J. Oldenburg, and N. A. Monteiro-Riviere, "Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro," Environ Health Perspect, vol. 118, pp. 407-13, 2010. [80]I. Aranaz, M. Mengibar, R. Harris, I. Panos, B. Miralles, N. Acosta, et al., "Functional characterization of chitin and chitosan," Current Chemical Biology, vol. 3, pp. 203-230, 2009. [81]M. N. V. Ravi Kumar, "A review of chitin and chitosan applications," Reactive and Functional Polymers, vol. 46, pp. 1-27, 2000. [82]R. A. Hamid, F. Al-Akayleh, M. Shubair, I. Rashid, M. A. Remawi, and A. Badwan, "Evaluation of three chitin metal silicate co-precipitates as a potential multifunctional single excipient in tablet formulations," Mar Drugs, vol. 8, pp. 1699-715, 2010. [83]Y. Zhang, C. Xue, Y. Xue, R. Gao, and X. Zhang, "Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction," Carbohydr Res, vol. 340, pp. 1914-7, 2005. [84]A.-M. Jaber, N. Al-Jbour, R. Obaidat, and A. Badwan, "Further investigation on the degree of deacetylation of chitosan determined by potentiometric titration," Journal of Excipients and Food Chemicals, vol. 2, pp. 16-25, 2011. [85]S. Kamal, J. Abdel-Motalleb, A.-j. Nawzat, O. Rana, A.-R. Mayyas, and B. Adnan, "Further investigation on the degree of deacetylation of chitosan determined by potentiometric titration," 2011. [86]C. K. S. Pillai, W. Paul, and C. P. Sharma, "Chitin and chitosan polymers: Chemistry, solubility and fiber formation," Progress in Polymer Science, vol. 34, pp. 641-678, 2009. [87]A. A. Badwan, I. Rashid, M. M. Omari, and F. H. Darras, "Chitin and chitosan as direct compression excipients in pharmaceutical applications," Mar Drugs, vol. 13, pp. 1519-47, 2015. [88]I. Younes and M. Rinaudo, "Chitin and chitosan preparation from marine sources. Structure, properties and applications," Mar Drugs, vol. 13, pp. 1133-1174, 2015. [89]P. K. Dutta, J. Dutta, and V. Tripathi, "Chitin and chitosan: Chemistry, properties and applications," Journal of Scientific and Industrial Research, vol. 63, pp. 20-31, 2004. [90]M. Rinaudo, "Chitin and chitosan: Properties and applications," Progress in Polymer Science, vol. 31, pp. 603-632, 2006. [91]A. M. Qandil, A. A. Obaidat, M. A. M. Ali, B. M. Al-Taani, B. M. Tashtoush, N. D. Al-Jbour, et al., "Investigation of the interactions in complexes of low molecular weight chitosan with ibuprofen," Journal of Solution Chemistry, vol. 38, pp. 695-712, 2009. [92]M. N. Kumar, R. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, "Chitosan chemistry and pharmaceutical perspectives," Chem Rev, vol. 104, pp. 6017-84, 2004. [93]H. Du, M. Liu, X. Yang, and G. Zhai, "The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery," Drug Discov Today, 2015. [94]R. A. Muzzarelli and O. Tubertini, "Chitin and chitosan as chromatographic supports and adsorbents for collection of metal ions from organic and aqueous solutions and sea-water," Talanta, vol. 16, pp. 1571-7, 1969. [95]C. Songkroah, W. Nakbanpote, and P. Thiravetyan, "Recovery of silver-thiosulphate complexes with chitin," Process Biochemistry, vol. 39, pp. 1553-1559, 2004. [96]S. H. Lim and S. M. Hudson, "Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group," Carbohydr Res, vol. 339, pp. 313-9, 2004. [97]N. L. Yusof, A. Wee, L. Y. Lim, and E. Khor, "Flexible chitin films as potential wound-dressing materials: wound model studies," J Biomed Mater Res A, vol. 66, pp. 224-32, 2003. [98]T. D. Rathke and S. M. Hudson, "Review of chitin and chitosan as fiber and film formers," Journal of Macromolecular Science, Part C, vol. 34, pp. 375-437, 1994. [99]N. A. Qinna, F. T. Akayleh, M. M. Al Remawi, B. S. Kamona, H. Taha, and A. A. Badwan, "Evaluation of a functional food preparation based on chitosan as a meal replacement diet," Journal of Functional Foods, vol. 5, pp. 1125-1134, 2013. [100]P. Giunchedi, C. Juliano, E. Gavini, M. Cossu, and M. Sorrenti, "Formulation and in vivo evaluation of chlorhexidine buccal tablets prepared using drug-loaded chitosan microspheres," Eur J Pharm Biopharm, vol. 53, pp. 233-9, 2002. [101]N. A. Athamneh, B. M. Tashtoush, A. M. Qandil, B. M. Al-Tanni, A. A. Obaidat, N. D. Al-Jbour, et al., "A new controlled-release liquid delivery system based on diclofenac potassium and low molecular weight chitosan complex solubilized in polysorbates," Drug Dev Ind Pharm, vol. 39, pp. 1217-29, 2013. [102]A. Elsayed, M. Al-Remawi, N. Qinna, A. Farouk, K. A. Al-Sou''od, and A. A. Badwan, "Chitosan-sodium lauryl sulfate nanoparticles as a carrier system for the in vivo delivery of oral insulin," AAPS PharmSciTech, vol. 12, pp. 958-64, 2011. [103]S. M. Assaf, N. D. Al-Jbour, A. a. F. Eftaiha, A. M. Elsayed, M. M. Al-Remawi, N. A. Qinna, et al., "Factors involved in formulation of oily delivery system for proteins based on PEG-8 caprylic/capric glycerides and polyglyceryl-6 dioleate in a mixture of oleic acid with chitosan," Journal of Dispersion Science and Technology, vol. 32, pp. 623-633, 2011. [104]F. Shahidi, J. K. V. Arachchi, and Y.-J. Jeon, "Food applications of chitin and chitosans," Trends in Food Science & Technology, vol. 10, pp. 37-51, 1999. [105]X. Fei Liu, Y. Lin Guan, D. Zhi Yang, Z. Li, and K. De Yao, "Antibacterial action of chitosan and carboxymethylated chitosan," Journal of Applied Polymer Science, vol. 79, pp. 1324-1335, 2001. [106]S. W. Fang, C. F. Li, and D. Y. C. Shih, "Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat," Journal of Food Protection, vol. 57, pp. 136-140, 1994. [107]N. R. Sudarshan, D. G. Hoover, and D. Knorr, "Antibacterial action of chitosan," Food Biotechnology, vol. 6, pp. 257-272, 1992. [108]G. Kisko, R. Sharp, and S. Roller, "Chitosan inactivates spoilage yeasts but enhances survival of Escherichia coli O157:H7 in apple juice," J Appl Microbiol, vol. 98, pp. 872-80, 2005. [109]A. Travan, C. Pelillo, I. Donati, E. Marsich, M. Benincasa, T. Scarpa, et al., "Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity," Biomacromolecules, vol. 10, pp. 1429-1435, 2009. [110]H. Penchev, D. Paneva, N. Manolova, and I. Rashkov, "Electrospun hybrid nanofibers based on chitosan or N-carboxyethylchitosan and silver nanoparticles," Macromol Biosci, vol. 9, pp. 884-94, 2009. [111]P. Jena, S. Mohanty, R. Mallick, B. Jacob, and A. Sonawane, "Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells," Int J Nanomedicine, vol. 7, pp. 1805-18, 2012. [112]R. R. Mohamed and M. W. Sabaa, "Synthesis and characterization of antimicrobial crosslinked carboxymethyl chitosan nanoparticles loaded with silver," Int J Biol Macromol, vol. 69, pp. 95-9, 2014. [113]R. Yoksan and S. Chirachanchai, "Silver nanoparticles dispersing in chitosan solution: Preparation by γ-ray irradiation and their antimicrobial activities," Materials Chemistry and Physics, vol. 115, pp. 296-302, 2009. [114]E. Guibal, S. Cambe, S. Bayle, J. M. Taulemesse, and T. Vincent, "Silver/chitosan/cellulose fibers foam composites: from synthesis to antibacterial properties," J Colloid Interface Sci, vol. 393, pp. 411-20, 2013. [115]J. An, Z. Ji, D. Wang, Q. Luo, and X. Li, "Preparation and characterization of uniform-sized chitosan/silver microspheres with antibacterial activities," Mater Sci Eng C Mater Biol Appl, vol. 36, pp. 33-41, 2014. [116]A. Regiel, S. Irusta, A. Kyziol, M. Arruebo, and J. Santamaria, "Preparation and characterization of chitosan-silver nanocomposite films and their antibacterial activity against Staphylococcus aureus," Nanotechnology, vol. 24, p. 015101, 2013. [117]T. V. Mathew and S. Kuriakose, "Photochemical and antimicrobial properties of silver nanoparticle-encapsulated chitosan functionalized with photoactive groups," Mater Sci Eng C Mater Biol Appl, vol. 33, pp. 4409-15, 2013. [118]A. M. Youssef, M. S. Abdel-Aziz, and S. M. El-Sayed, "Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials," Int J Biol Macromol, vol. 69, pp. 185-91, 2014. [119]M. M. Fouda, M. R. El-Aassar, and S. S. Al-Deyab, "Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles," Carbohydr Polym, vol. 92, pp. 1012-7, 2013. [120]C. A. de Lima, P. S. da Silva, and A. Spinelli, "Chitosan-stabilized silver nanoparticles for voltammetric detection of nitrocompounds," Sensors and Actuators B: Chemical, vol. 196, pp. 39-45, 2014. [121]Y. Long, X. Ran, L. Zhang, Q. Guo, T. Yang, J. Gao, et al., "A method for the preparation of silver nanoparticles using commercially available carboxymethyl chitosan and sunlight," Materials Letters, vol. 112, pp. 101-104, 2013. [122]G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, 2006. [123]J. El-Ali, P. K. Sorger, and K. F. Jensen, "Cells on chips," Nature, vol. 442, pp. 403-411, 2006. [124]I. Meyvantsson and D. J. Beebe, "Cell culture models in microfluidic systems," Annu Rev Anal Chem (Palo Alto Calif), vol. 1, pp. 423-49, 2008. [125]G. S. Fiorini and D. T. Chiu, "Disposable microfluidic devices: fabrication, function, and application," Biotechniques, vol. 38, pp. 429-46, 2005. [126]M. Björnmalm, Y. Yan, and F. Caruso, "Engineering and evaluating drug delivery particles in microfluidic devices," Journal of Controlled Release, vol. 190, pp. 139-149, 2014. [127]T. M. Squires and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Reviews of Modern Physics, vol. 77, pp. 977-1026, 2005. [128]D. Qin, Y. Xia, and G. M. Whitesides, "Soft lithography for micro- and nanoscale patterning," Nat. Protocols, vol. 5, pp. 491-502, 2010. [129]L. Capretto, D. Carugo, S. Mazzitelli, C. Nastruzzi, and X. Zhang, "Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications," Adv Drug Deliv Rev, vol. 65, pp. 1496-532, 2013. [130]K. S. Krishna, Y. Li, S. Li, and C. S. Kumar, "Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications," Adv Drug Deliv Rev, vol. 65, pp. 1470-95, 2013. [131]S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, "Droplet microfluidics," Lab on a Chip, vol. 8, pp. 198-220, 2008. [132]M. J. Jebrail, M. S. Bartsch, and K. D. Patel, "Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine," Lab on a Chip, vol. 12, pp. 2452-2463, 2012. [133]W. J. Duncanson, T. Lin, A. R. Abate, S. Seiffert, R. K. Shah, and D. A. Weitz, "Microfluidic synthesis of advanced microparticles for encapsulation and controlled release," Lab on a Chip, vol. 12, pp. 2135-2145, 2012. [134]C. X. Zhao, "Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery," Adv Drug Deliv Rev, vol. 65, pp. 1420-46, 2013. [135]M. Windbergs, Y. Zhao, J. Heyman, and D. A. Weitz, "Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives," J Am Chem Soc, vol. 135, pp. 7933-7, 2013. [136]L. Martin-Banderas, M. Flores-Mosquera, P. Riesco-Chueca, A. Rodriguez-Gil, A. Cebolla, S. Chavez, et al., "Flow Focusing: a versatile technology to produce size-controlled and specific-morphology microparticles," Small, vol. 1, pp. 688-92, 2005. [137]R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. Kyei-Manu, et al., "Microfluidic platform for controlled synthesis of polymeric nanoparticles," Nano Lett, vol. 8, pp. 2906-12, 2008. [138]N. Kolishetti, S. Dhar, P. M. Valencia, L. Q. Lin, R. Karnik, S. J. Lippard, et al., "Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy," Proceedings of the National Academy of Sciences, vol. 107, pp. 17939-17944, 2010. [139]F. S. Majedi, M. M. Hasani-Sadrabadi, S. Hojjati Emami, M. A. Shokrgozar, J. J. VanDersarl, E. Dashtimoghadam, et al., "Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents," Lab on a Chip, vol. 13, pp. 204-207, 2013. [140]P. M. Valencia, E. M. Pridgen, M. Rhee, R. Langer, O. C. Farokhzad, and R. Karnik, "Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy," ACS Nano, vol. 7, pp. 10671-10680, 2013. [141]Y. Kim, B. Lee Chung, M. Ma, W. J. M. Mulder, Z. A. Fayad, O. C. Farokhzad, et al., "Mass production and size control of lipid–polymer hybrid nanoparticles through controlled microvortices," Nano Lett, vol. 12, pp. 3587-3591, 2012. [142]A. J. Mieszawska, Y. Kim, A. Gianella, I. van Rooy, B. Priem, M. P. Labarre, et al., "Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy," Bioconjugate Chemistry, vol. 24, pp. 1429-1434, 2013. [143]Y. Kim, F. Fay, D. P. Cormode, B. L. Sanchez-Gaytan, J. Tang, E. J. Hennessy, et al., "Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics," ACS Nano, vol. 7, pp. 9975-9983, 2013. [144]C. Kantak, S. Beyer, L. Yobas, T. Bansal, and D. Trau, "A ''microfluidic pinball'' for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules," Lab Chip, vol. 11, pp. 1030-5, 2011. [145]C. Priest, A. Quinn, A. Postma, A. N. Zelikin, J. Ralston, and F. Caruso, "Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis," Lab Chip, vol. 8, pp. 2182-7, 2008. [146]Y. Yan, M. Björnmalm, and F. Caruso, "Assembly of layer-by-layer particles and their interactions with biological systems," Chemistry of Materials, vol. 26, pp. 452-460, 2014. [147]D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, "Continuous-flow lithography for high-throughput microparticle synthesis," Nat Mater, vol. 5, pp. 365-9, 2006. [148]P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, et al., "Stop-flow lithography to generate cell-laden microgel particles," Lab Chip, vol. 8, pp. 1056-61, 2008. [149]D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, "Stop-flow lithography in a microfluidic device," Lab on a Chip, vol. 7, pp. 818-828, 2007. [150]D. C. Pregibon, M. Toner, and P. S. Doyle, "Multifunctional encoded particles for high-throughput biomolecule analysis," Science, vol. 315, pp. 1393-1396, 2007. [151]D. C. Appleyard, S. C. Chapin, R. L. Srinivas, and P. S. Doyle, "Bar-coded hydrogel microparticles for protein detection: synthesis, assay and scanning," Nat Protoc, vol. 6, pp. 1761-74, 2011. [152]Y.-S. Lin, K.-S. Huang, C.-H. Yang, C.-Y. Wang, Y.-S. Yang, H.-C. Hsu, et al., "Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture," PLoS ONE, vol. 7, p. e33184, 2012. [153]C. H. Yang, K. S. Huang, C. Y. Wang, Y. Y. Hsu, F. R. Chang, and Y. S. Lin, "Microfluidic-assisted synthesis of hemispherical and discoidal chitosan microparticles at an oil/water interface," Electrophoresis, vol. 33, pp. 3173-80, 2012. [154]Y.-S. Lin, C.-H. Yang, C.-T. Wu, A. Grumezescu, C.-Y. Wang, W.-C. Hsieh, et al., " A microfluidic chip using phenol formaldehyde resin for uniform-sized polycaprolactone and chitosan microparticle generation," Molecules, vol. 18, p. 6521, 2013. [155]C. H. Yang, K. S. Huang, A. M. Grumezescu, C. Y. Wang, S. C. Tzeng, S. Y. Chen, et al., "Synthesis of uniform poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) microspheres using a microfluidic chip for comparison," Electrophoresis, vol. 35, pp. 316-22, 2014. [156]C. H. Yang, C. Y. Wang, K. S. Huang, C. P. Kung, Y. C. Chang, and J. F. Shaw, "Microfluidic one-step synthesis of Fe(3)O(4)-chitosan composite particles and their applications," Int J Pharm, vol. 463, pp. 155-60, 2014. [157]K. S. Huang, C. H. Yang, C. P. Kung, A. M. Grumezescu, M. D. Ker, Y. S. Lin, et al., "Synthesis of uniform core-shell gelatin-alginate microparticles as intestine-released oral delivery drug carrier," Electrophoresis, vol. 35, pp. 330-6, 2014. [158]K. Arita, M. Akiyama, Y. Tsuji, J. R. McMillan, R. A. Eady, and H. Shimizu, "Changes in gap junction distribution and connexin expression pattern during human fetal skin development," J Histochem Cytochem, vol. 50, pp. 1493-500, 2002.
|