Anthes, G. (2010). Topic models vs. unstructured data. Commun. ACM, 53(12), 16-18. doi: 10.1145/1859204.1859210
Azzopardi, L., Girolami, M., & Van Rijsbergen, C. J. (2004, 25-29 July 2004). Topic based language models for ad hoc information retrieval. Paper presented at the Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics): Springer-Verlag New York, Inc.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. J. Machine Learning Res., 3, 993-1022.
Carmel, D., Roitman, H., & Zwerdling, N. (2009). Enhancing cluster labeling using Wikipedia SIGIR '09 Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (pp. 139-146): Association for Computing Machinery.
Chang, J., Gerrish, S., Wang, C., Boyd-graber, J. L., & Blei, D. M. (2009). Reading Tea Leaves: How Humans Interpret Topic Models, Advances in Neural Information Processing Systems 22, pp. 288-296.
Cristianini, N., Kandola, J., Elisseeff, A., & Shawe-Taylor, J. (2006). On Kernel Target Alignment. In D. Holmes & L. Jain (Eds.), Innovations in Machine Learning (Vol. 194, pp. 205-256): Springer Berlin Heidelberg.
Cutting, D. R., Karger, D. R., & Pedersen, J. O. (1993). Constant interaction-time scatter/gather browsing of very large document collections. Paper presented at the Proceedings of the 16th annual international ACM SIGIR conference on Research and development in information retrieval, Pittsburgh, Pennsylvania, USA.
Darling, W. M. (2011). A theoretical and practical implementation tutorial on topic modeling and gibbs sampling. Paper presented at the Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies.
Davidov, D., Gabrilovich, E., & Markovitch, S. (2004). Parameterized generation of labeled datasets for text categorization based on a hierarchical directory. Paper presented at the Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, Sheffield, United Kingdom.
Deerwester, S., Dumais, S., Landauer, T., Furnas, G., & Harshman, R. (1990). Indexing by Latent Semantic Analysis. Journal of the American Society of Information Science, 41(6), 391-407. doi: citeulike-article-id:78280
Feldman, R., Fresko, M., Kinar, Y., Lindell, Y., Liphstat, O., Rajman, M., . . . Zamir, O. (1998). Text mining at the term level. In J. Żytkow & M. Quafafou (Eds.), Principles of Data Mining and Knowledge Discovery (Vol. 1510, pp. 65-73): Springer Berlin Heidelberg.
Ferrer I Cancho, R., & Solé, R. V. (2001). The small world of human language. Proceedings. Biological sciences / The Royal Society, 268(1482), 2261-2265. doi: 10.1098/rspb.2001.1800
Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using Wikipedia-based explicit semantic analysis. Paper presented at the Proceedings of the 20th international joint conference on Artifical intelligence, Hyderabad, India.
Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101(suppl 1), 5228-5235. doi: 10.1073/pnas.0307752101
Heinrich, G. (2005). Parameter estimation for text analysis. Web: http://www. arbylon. net/publications/text-est. pdf.
Hofmann, T. (1999). Probabilistic latent semantic indexing. Paper presented at the Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, Berkeley, California, USA.
Hsinchun, C., Yi-Ming, C., Ramsey, M., & Yang, C. C. (1998). An intelligent personal spider (agent) for dynamic Internet/Intranet searching. Decision Support Systems, 23(1), 41-58. doi: http://dx.doi.org/10.1016/S0167-9236(98)00035-9
Hu, D. J. (2009). Latent dirichlet allocation for text, images, and music. University of California, San Diego. Retrieved April, 26, 2013.
Ito, T., Shimbo, M., Mochihashi, D., & Matsumoto, Y. (2006). Exploring Multiple Communities with Kernel-Based Link Analysis. In J. Fürnkranz, T. Scheffer & M. Spiliopoulou (Eds.), Knowledge Discovery in Databases: PKDD 2006 (Vol. 4213, pp. 235-246): Springer Berlin Heidelberg.
Jiang, J. J., & Conrath, D. W. (1997). Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy. Paper presented at the International Conference Research on Computational Linguistics (ROCLING X).
Jones, K. S. (1972). A Statistical Interpretation of term specificity and its application in retrieval. Journal of Documentation, 28(1), 11-21. doi: doi:10.1108/eb026526
Kakkonen, T., Myller, N., Sutinen, E., & Timonen, J. (2008). Comparison of Dimension Reduction Methods for Automated Essay Grading. Educational Technology & Society, 11(3), 275-288.
Kandola, J. S., Shawe-Taylor, J., & Cristianini, N. (2002). Learning Semantic Similarity. Paper presented at the Advances in Neural Information Processing Systems 15: Neural. http://books.nips.cc/papers/files/nips15/AA22.pdf
Kasliwal, B., Bhatia, S., Saini, S., Thaseen, I. S., & Kumar, C. A. (2014, 21-22 Feb. 2014). A hybrid anomaly detection model using G-LDA. Paper presented at the Advance Computing Conference (IACC), 2014 IEEE International.
Larkey, L. S., Ballesteros, L., & Connell, M. E. (2002). Improving stemming for Arabic information retrieval: light stemming and co-occurrence analysis. Paper presented at the Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, Tampere, Finland.
Lau, J. H., Grieser, K., Newman, D., & Baldwin, T. (2011). Automatic labelling of topic models. Paper presented at the Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, Portland, Oregon.
Levandowsky, M., & Winter, D. (1971). Distance between Sets. Nature, 234(5323), 34-35.
Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., & Baldi, P. (2007). Mining concepts from code with probabilistic topic models. Paper presented at the Proceedings of the twenty-second IEEE/ACM international conference on Automated software engineering, Atlanta, Georgia, USA.
Liu, N., Zhang, B., Yan, J., Yang, Q., Yan, S., Chen, Z., . . . Ma, W.-Y. (2004). Learning similarity measures in non-orthogonal space. Paper presented at the Proceedings of the thirteenth ACM international conference on Information and knowledge management, Washington, D.C., USA.
Maskeri, G., Sarkar, S., & Heafield, K. (2008). Mining business topics in source code using latent dirichlet allocation. Paper presented at the Proceedings of the 1st India software engineering conference, Hyderabad, India.
McCandless, M., Hatcher, E., & Gospodnetic, O. (2010). Lucene in Action, Second Edition: Covers Apache Lucene 3.0. Greenwich, CT, USA: Manning Publications Co.
Mehrotra, R., Sanner, S., Buntine, W., & Xie, L. (2013). Improving LDA topic models for microblogs via tweet pooling and automatic labeling. Paper presented at the Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, Dublin, Ireland.
Mei, Q., Shen, X., & Zhai, C. (2007). Automatic labeling of multinomial topic models. Paper presented at the Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, San Jose, California, USA.
Osinski, S., & Weiss, D. (2005). A concept-driven algorithm for clustering search results. Intelligent Systems, IEEE, 20(3), 48-54. doi: 10.1109/MIS.2005.38
Peipeng, L., & Sim, R. T. T. (2014). Research experience of big data analytics: the tools for government: a case using social network in mining preferences of tourists. Paper presented at the Proceedings of the 8th International Conference on Theory and Practice of Electronic Governance, Guimaraes, Portugal.
Popescul, A., & Ungar, L. H. (2000). Automatic labeling of document clusters. Unpublished manuscript, available at http://citeseer. nj. nec. com/popescul00automatic. html.
Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137. doi: doi:10.1108/eb046814
Saini, S., Kasliwal, B., & Bhatia, S. (2013). Spam Detection using G-LDA. International Journal of Advanced Research in Computer Science and Software Engineering, 3(10).
Salton, G., & McGill, M. J. (1986). Introduction to Modern Information Retrieval. New York, NY, USA: McGraw-Hill, Inc.
Treeratpituk, P., & Callan, J. (2006). Automatically labeling hierarchical clusters. Paper presented at the Proceedings of the 2006 international conference on Digital government research, San Diego, California, USA.
Wang, Y. (2008). Distributed Gibbs Sampling of Latent Topic Models: The Gritty Details.
Yang, Y., & Pedersen, J. (1997). A comparative study on feature selection in text categorization. Paper presented at the Proceedings of ICML-97, 14th International Conference on Machine Learning.
Zhou, S., Li, K., & Liu, Y. (2008). Text categorization based on topic model. Paper presented at the Proceedings of the 3rd international conference on Rough sets and knowledge technology, Chengdu, China.
江珅薇. (2007). 相關學術論文集合關鍵詞擷取-學術領域自動命名. (碩士), 國立臺北大學, 新北市.林佳宜. (2008). 相關文件群集之階層式自動標籤. (碩士), 國立臺北大學, 新北市.