|
1.Moeini, M., et al., Reviewing time intervals from onset of the symptoms to thrombolytic therapy in patients with ST segment elevation myocardial infarction (STEMI). Iran J Nurs Midwifery Res, 2010. 15(Suppl 1): p. 379-85. 2.Sanada, S., I. Komuro, and M. Kitakaze, Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol, 2011. 301(5): p. H1723-41. 3.Chen, K., et al., Protective Effects of Peroxisome Proliferator-Activated Receptor-alpha Agonist, Wy14643, on Hypoxia/Reoxygenation Injury in Primary Rat Hepatocytes. PPAR Res, 2012. 2012: p. 547980. 4.Javadov, S. and A. Kuznetsov, Mitochondrial permeability transition and cell death: the role of cyclophilin d. Front Physiol, 2013. 4: p. 76. 5.Alpert, J.S., et al., Myocardial infarction redefined--a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol, 2000. 36(3): p. 959-69. 6.Chua, S., et al., Time courses of subcellular signal transduction and cellular apoptosis in remote viable myocardium of rat left ventricles following acute myocardial infarction: role of pharmacomodulation. J Cardiovasc Pharmacol Ther, 2009. 14(2): p. 104-15. 7.Kagoshima, M., Y. Tsubata, and H. Shimada, [Experimental studies of physiological and pathological effects induced by systemic hypoxia and the hypoxia-reoxygenation model in rats]. Nihon Yakurigaku Zasshi, 1995. 106(2): p. 85-97. 8.Radke, P.W., [Acute myocardial infarction: diagnosis and treatment]. Med Monatsschr Pharm, 2011. 34(3): p. 78-84; quiz 85-6. 9.Gauduel, Y. and M.A. Duvelleroy, Role of oxygen radicals in cardiac injury due to reoxygenation. J Mol Cell Cardiol, 1984. 16(5): p. 459-70. 10.Miao, Y., et al., Acetylcholine attenuates hypoxia/ reoxygenation-induced mitochondrial and cytosolic ROS formation in H9c2 cells via M2 acetylcholine receptor. Cell Physiol Biochem, 2013. 31(2-3): p. 189-98. 11.Bao, M.H., et al., Rutaecarpine prevents hypoxia-reoxygenation-induced myocardial cell apoptosis via inhibition of NADPH oxidases. Can J Physiol Pharmacol, 2011. 89(3): p. 177-86. 12.Chang, G., et al., Cardioprotective effects of exenatide against oxidative stress-induced injury. Int J Mol Med, 2013. 32(5): p. 1011-20. 13.Navalakhe, R.M. and T.D. Nandedkar, Application of nanotechnology in biomedicine. Indian J Exp Biol, 2007. 45(2): p. 160-5. 14.Tsai, Y.Y., et al., Identification of the nanogold particle-induced endoplasmic reticulum stress by omic techniques and systems biology analysis. ACS Nano, 2011. 5(12): p. 9354-69. 15.Sanvicens, N. and M.P. Marco, Multifunctional nanoparticles--properties and prospects for their use in human medicine. Trends Biotechnol, 2008. 26(8): p. 425-33. 16.Zortea, D., et al., Effects of phonophoresis and gold nanoparticles in experimental model of muscle overuse: role of oxidative stress. Ultrasound Med Biol, 2015. 41(1): p. 151-62. 17.Selim, M.E., Y.M. Abd-Elhakim, and L.Y. Al-Ayadhi, Pancreatic response to gold nanoparticles includes decrease of oxidative stress and inflammation in autistic diabetic model. Cell Physiol Biochem, 2015. 35(2): p. 586-600. 18.Liu, J.J., et al., Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicol Appl Pharmacol, 2004. 201(2): p. 186-93. 19.Ao, Z.H., et al., Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J Ethnopharmacol, 2009. 121(2): p. 194-212. 20.Geethangili, M. and Y.M. Tzeng, Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds. Evid Based Complement Alternat Med, 2011. 2011: p. 212641. 21.Hseu, Y.C., et al., Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sci, 2002. 71(4): p. 469-82. 22.Qi, J., et al., [Effect of Antrodia cinnamomea on gene expression related to aortal endothelial injury in rats with hyperlipidemia]. Zhongguo Zhong Yao Za Zhi, 2014. 39(9): p. 1670-4. 23.Su, Y.C., et al., Eburicoic Acid, an Active Triterpenoid from the Fruiting Bodies of Basswood Cultivated Antrodia cinnamomea, Induces ER Stress-Mediated Autophagy in Human Hepatoma Cells. J Tradit Complement Med, 2012. 2(4): p. 312-22. 24.Ramamurthy, S. and G.V. Ronnett, Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain. J Physiol, 2006. 574(Pt 1): p. 85-93. 25.Miller, E.J., et al., Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature, 2008. 451(7178): p. 578-82. 26.Chen-Scarabelli, C., et al., The role and modulation of autophagy in experimental models of myocardial ischemia-reperfusion injury. J Geriatr Cardiol, 2014. 11(4): p. 338-48. 27.Matsui, Y., et al., Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res, 2007. 100(6): p. 914-22. 28.Wang, Y., et al., AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin. Circulation, 2009. 119(6): p. 835-44. 29.Kramer, D.K., et al., Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle. J Biol Chem, 2007. 282(27): p. 19313-20. 30.Greene, N.P., et al., Regulators of blood lipids and lipoproteins? PPARdelta and AMPK, induced by exercise, are correlated with lipids and lipoproteins in overweight/obese men and women. Am J Physiol Endocrinol Metab, 2012. 303(10): p. E1212-21. 31.Qi, D., et al., The vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury. J Clin Invest, 2014. 124(8): p. 3540-50. 32.Lee, W.H. and S.G. Kim, AMPK-Dependent Metabolic Regulation by PPAR Agonists. PPAR Res, 2010. 2010. 33.Merten, K.E., et al., Calcineurin activation is not necessary for Doxorubicin-induced hypertrophy in H9c2 embryonic rat cardiac cells: involvement of the phosphoinositide 3-kinase-Akt pathway. J Pharmacol Exp Ther, 2006. 319(2): p. 934-40. 34.Chen, Q.M., et al., Hydrogen peroxide dose dependent induction of cell death or hypertrophy in cardiomyocytes. Arch Biochem Biophys, 2000. 373(1): p. 242-8. 35.Bidez, P.R., 3rd, et al., Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed, 2006. 17(1-2): p. 199-212. 36.Kuznetsov, A.V., et al., H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochim Biophys Acta, 2015. 1853(2): p. 276-84. 37.Park, M., et al., Globular adiponectin, acting via AdipoR1/APPL1, protects H9c2 cells from hypoxia/reoxygenation-induced apoptosis. PLoS One, 2011. 6(4): p. e19143. 38.Zhang, L., et al., PEP-1-CAT protects hypoxia/reoxygenation-induced cardiomyocyte apoptosis through multiple sigaling pathways. J Transl Med, 2013. 11: p. 113. 39.Cook, J.A. and J.B. Mitchell, Viability measurements in mammalian cell systems. Anal Biochem, 1989. 179(1): p. 1-7. 40.Tarpey, M.M. and I. Fridovich, Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res, 2001. 89(3): p. 224-36. 41.Akerboom, T.P. and H. Sies, Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol, 1981. 77: p. 373-82. 42.Vermes, I., et al., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods, 1995. 184(1): p. 39-51. 43.Nunez, R., DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol, 2001. 3(3): p. 67-70. 44.Zhang, C.L., et al., A novel method to study the local mitochondrial fusion in myelinated axons in vivo. J Neurosci Methods, 2012. 207(1): p. 51-8. 45.Pchejetski, D., et al., Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res, 2007. 100(1): p. 41-9. 46.Shiroto, K., et al., MK2-/- gene knockout mouse hearts carry anti-apoptotic signal and are resistant to ischemia reperfusion injury. J Mol Cell Cardiol, 2005. 38(1): p. 93-7. 47.Duilio, C., et al., Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia. Am J Physiol Heart Circ Physiol, 2001. 280(6): p. H2649-57. 48.Fiorillo, C., et al., Protective effects of the PARP-1 inhibitor PJ34 in hypoxic-reoxygenated cardiomyoblasts. Cell Mol Life Sci, 2006. 63(24): p. 3061-71. 49.Becker, L.B., New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res, 2004. 61(3): p. 461-70. 50.Chen, Y.F., Atrial natriuretic peptide in hypoxia. Peptides, 2005. 26(6): p. 1068-77. 51.Chen, Y.F., J. Durand, and W.C. Claycomb, Hypoxia stimulates atrial natriuretic peptide gene expression in cultured atrial cardiocytes. Hypertension, 1997. 29(1 Pt 1): p. 75-82. 52.Kolamunne, R.T., M. Clare, and H.R. Griffiths, Mitochondrial superoxide anion radicals mediate induction of apoptosis in cardiac myoblasts exposed to chronic hypoxia. Arch Biochem Biophys, 2011. 505(2): p. 256-65. 53.Waypa, G.B., et al., Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res, 2002. 91(8): p. 719-26. 54.Scarabelli, T., et al., Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation, 2001. 104(3): p. 253-6. 55.Higuchi, Y., et al., Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol, 2002. 34(2): p. 233-40. 56.Scremin, A.M. and O.U. Scremin, Physostigmine-induced cerebral protection against hypoxia. Stroke, 1979. 10(2): p. 142-3. 57.Wang, Z., et al., bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway. J Cell Mol Med, 2015. 19(3): p. 595-607. 58.Youle, R.J. and A. Strasser, The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol, 2008. 9(1): p. 47-59. 59.Kalogeris, T., Y. Bao, and R.J. Korthuis, Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol, 2014. 2: p. 702-14. 60.Starkov, A.A., B.M. Polster, and G. Fiskum, Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J Neurochem, 2002. 83(1): p. 220-8. 61.Iwawaki, T., et al., Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol, 2001. 3(2): p. 158-64. 62.Kim, D.S., et al., Kaempferol protects ischemia/reperfusion-induced cardiac damage through the regulation of endoplasmic reticulum stress. Immunopharmacol Immunotoxicol, 2008. 30(2): p. 257-70. 63.Barreto-Torres, G., et al., The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARalpha-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol, 2015. 308(7): p. H749-58. 64.Palomer, X., et al., PPARbeta/delta attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells. Int J Cardiol, 2014. 174(1): p. 110-8. 65.Cheang, W.S., et al., Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5' adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor delta pathway. Arterioscler Thromb Vasc Biol, 2014. 34(4): p. 830-6. 66.Barroso, E., et al., [PPARbeta/delta Activation prevents hypertriglyceridemia caused by a high fat diet. Involvement of AMPK and PGC-1alpha-Lipin1-PPARalpha pathway]. Clin Investig Arterioscler, 2013. 25(2): p. 63-73. 67.Asrih, M., et al., Differential regulation of stimulated glucose transport by free fatty acids and PPARalpha or -delta agonists in cardiac myocytes. Am J Physiol Endocrinol Metab, 2012. 302(7): p. E872-84. 68.Alvarez-Guardia, D., et al., PPARbeta/delta activation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. Biochim Biophys Acta, 2011. 1811(2): p. 59-67. 69.Sasaki, T., et al., Role of AMPK and PPARgamma1 in exercise-induced lipoprotein lipase in skeletal muscle. Am J Physiol Endocrinol Metab, 2014. 306(9): p. E1085-92. 70.Puri, V. and M.P. Czech, Lipid droplets: FSP27 knockout enhances their sizzle. J Clin Invest, 2008. 118(8): p. 2693-6.
|