西文部分:
Albertelli, P., Mussi, V., Ravasio, C. and Monno M. “An Experimental Investigation of the Effects of Spindle Speed Variation on Tool Wear in Turning”, Procedia CIRP 4, vol.22, pp.29-34, (2012).
Alonso, J., and Salgado, R., “Analysis of the structure of vibration signals for tool wear detection”, Mechanical Systems and Signal Processing, vol.22, pp.735-748, (2008).
Balan, G., and Epureanu, A., “The monitoring of the turning tool wear process using an artificial neural network”, Intelligent Production Machines and Systems, vol.47, pp.20-25, (2006).
Bhuiyan, M., Choudhury, I., and Dahari, M., “Monitoring the tool wear, surface roughness and chip formation occurrences using multiple sensors in turning”, Journal of Manufacturing Systems, vol.33, pp.476-487, (2014).
Blau, J., “Fifty years of research on the wear of metals”, Tribology International, Vol.30, pp. 321-331, (1997).
Gómez, M., Hey, A., D’Attelis, C., and Ruzzante. J., “Assessment of cutting tool condition by acoustic emission”, Procedia Materials Science, vol.1, pp.321-328, (2012).
Grzesik, Rech , and Żak, “Determination of friction in metal cutting with tool wear and flank face effects”, Wear, Vol.317, pp. 8-16, (2014).
Hsu, S., Shen. M., and Ruff. A., “Wear prediction for metals”, Tribology International, Vol. 30, pp. 377-383, (1997).
Jun, B., Ozdoganlar, DeVor, E., Kapoor, G., Kirchheim, and Schaffner, “Evaluation of a spindle-based force sensor for monitoring and fault diagnosis of machining operations”, International Journal of Machine Tools & Manufacture, Vol. 42, pp. 741-751, (2002).
Jurkovic, J., Korosec, M., and Kopac J., “New approach in tool wear measuring technique using CCD vision system”, International Journal of Machine Tools & Manufacture, Vol. 45, pp. 1023-1030, (2005).
Kara, Aslantas, and Cicek, “Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network”, Applied Soft Computing, Vol. 38, pp. 64-74, (2016).
Karandikara, M., Schmitza, L., and Abbas, E., “Spindle speed selection for tool life testing using Bayesian inference”, Journal of Manufacturing Systems, Vol. 31, pp. 403-411, (2012).
Kilundu, Dehombreux, and Chiementin, “Tool wear monitoring by machine learning techniques and singular spectrum analysis”, Mechanical Systems and Signal Processing, Vol. 25, pp. 400-415, (2011).
Kim, Ahn, Kim, and Takata, “Real-time drill wear estimation based on spindle motor power”, Journal of Materials Processing Technology, Vol. 124, pp. 267-273, (2002).
Lee, Kao, and Yang, “Service innovation and smart analytics for Industry 4.0 and big data environment”, Procedia CIRP, Vol. 16, pp. 3-8, (2014).
Loizou, Tian, Robertson, and Camelio, “Automated wear characterization for broaching tools basedon machine vision systems”, Journal of Manufacturing Systems, Vol. 37, pp. 558-563, (2015).
Makridakis, S., Chatfield, C., Hibon, M., Lawrence, M., and Mills, T., “The M2-Competition: A Real-Time Judgmentally-Based Forecasting Study”, International Journal of Forecasting, Vol. 9, Issue 1, pp. 5-22, (1993).
Mell, P., and Timothy G., “The NIST Definition Of Cloud Computing”, National Institute Of Standards and Technology Special Publication, pp.800-145, (2011).
Nouri, Fussell, K., Ziniti, L., and Linder, “Real-time tool wear monitoring in milling using a cutting condition independent method”, International Journal of Machine Tools & Manufacture, Vol.89, pp.1-13, (2015).
Painuli, Elangovan, M., and Sugumaran, V., “Tool condition monitoring using K-star algorithm”, Expert Systems with Applications, Vol.41, pp.2638-2643, (2014).
Papacharalampopoulos, A., Stavropoulos, P., Doukas, C., Foteinopoulos, P., and
Chryssolouris, G., “Acoustic emission signal through turning tools: A computational study”, Procedia CIRP, Vol.8, pp.426-431, (2013).
Patra, Pal, K., and Bhattacharyya, “Artificial neural network based prediction of drill flank wear from motor current signals”, Applied Soft Computing, Vol.7, pp.929-935, (2007).
Pfeifer, T., and Wiegers, L., “Reliable tool wear monitoring by optimized image and illumination control in machine vision”, Measurement, Vol.28, pp.209-218, (2000).
Prasad, and Ramamoorthy, “Tool wear evaluation by stereo vision and prediction by artificial neural network”, Journal of Materials Processing Technology, Vol.112, pp.43-52, (2001).
Rmili, Ouahabi, Serra, and Leroy, “An automatic system based on vibratory analysis for cutting tool wear monitoring”, Measurement, Vol.77, pp.117-128, (2016).
Schaal, N., Kuster, F., and Wegener, K., “Springback in metal cutting with high cutting speeds”, Procedia CIRP, Vol.31, pp.24-28, (2015).
Wang, Hong, and Wong, “Flank wear measurement by a threshold independent method with sub-pixel accuracy”, International Journal of Machine Tools & Manufacture, Vol.46, pp.199-207, (2006).
Wang, Wong, and Hong, “3D measurement of crater wear by phase shifting method”, Wear, Vol.261, pp.164-171, (2006).
Yuan, Y., Chen, W., and Gao, L., “Tool Materials Rapid Selection Based on Initial Wear”, Chinese Journal of Aeronautics, Vol.23, pp.386-392, (2010).
中文部分:
王怡惠,「從工業4.0看我國生產力4.0之挑戰」,臺灣經濟研究月刊,第38卷第8期,頁111-119,[民104]。王奕鈞,「神經網路應用於地籍坐標轉換之研究」,國立政治大學地政學系、私立中國地政研究所,[民95]。
李德偉、顧煜、王海平、徐立,「大數據浪潮:探索BIG DATA之洶湧,找出人潮、錢潮、資訊潮」,2-3 – 2-7頁,臺北市:上奇資訊,[民103]。
孟繼洛、傅兆章、許源泉、黃聖芳、李炳寅、翁豐在、黃錦鐘、林守儀、林瑞璋、林維新、馮展華、胡毓忠、楊錫杭,「機械製造」,5-12 – 5-13頁,臺北縣: 全華,[民99]。
明祿工業股份有限公司,MTJN 93°,http://www.marox.com.tw/cht/toolholders/mtjn93.html,[2010]。
林陽泰、林維新,「製造程序」,臺北市:全華圖書,[民80]。
陳健立,「以電腦視覺畫面鑑定車削刀片等級之技術研究」,朝陽科技大學,[民101]。
陳愷邑,「建立工業4.0 智慧化整合系統以強化綠能產業競爭力與營運策略研究」,東南科技大學,[民104]。
馬成傑,「監督式學習類神經網路於銑削斷刀即時監控之研究」,中原大學,[民99]。
馬寧元、李新中,「刀具破損之探討」,機械工業雜誌,第291期,第155-157頁,[民96] 。唐永新、莊士青,「機器視覺感測技術應用於刀具狀況監控之發展」,機械工業月刊,第二十五卷第三期,第503-507頁,[民88]。
高雪鵬、丛爽,「BP网路改进法的性能对比研究」,控制与决策,第16卷第2期,第167-171頁,[2001]。
黃立安,「鞋面展開之人工智慧逆向學習技術研究」,朝陽科技大學,[民101]。
葉書華,「以機器視覺為基礎之刀具磨耗偵測系統研發」,義守大學,
[民97]。
廖偉丞,「應用擴增實境擷取大肢體動作之研究」,朝陽科技大學,[民103]。
魏秋建,「機械製造」,11-3 – 11-7頁,臺北市:全華圖書,[民85]。
羅華強,「類神經網路-MATLAB的應用」,新北市:高立圖書,[民100]。
DIGITIMES中文網,四大架構打造製造智慧化願景,http://www.digitimes.com.tw/tw/iac/shwnws.asp?cnlid=19&cat=20&cat1=10&id=0000311509_MDY6LNZDLX9M2YLT4CBNA#ixzz3oQtj5KF7,[民101]
Jeremy Rifkin著,陳儀、陳琇玲譯,「物聯網革命 : 改寫市場經濟,顛覆產業運行,你我的生活即將面臨巨變」,台北市 : 商周化,[民103]。