王瑞彥,「以植物復育技術處理受多環芳香烴芘污染土壤之研究」,博士論文,國立中山大學海洋環境及工程學系,高雄 (2008)。行政院環境保護署,土壤酸鹼值測定法,NIEA S410.61C。
行政院環境保護署,土壤中陽離子交換容量-醋酸鈉法,NIEA S202.60A。
李貽華,「多環芳香烴碳氫化合物(PAHs)在植體中之累積及其監測植物之研究」,博士論文,國立中興大學生命科學系,台中(2002)。林淵淙,「廳廚房排放廢氣及周圍大氣中多環芳香烴化合物之特徵」,國立成功大學環坑工程所,臺南 (2000)。
陳琪婷、黃春蘭、楊磊、蔡明惠,2003,以二氧化錳催化降解水中污染物之研究,中華民國環境工程學會第二十八屆廢水處理技術研討會論文集,臺中。
曾國輝,化學(上),藝軒圖書出版社(2001)。
袁紹英、張碧芬,「土壤受多環芳香族碳氫化合物污染之生物整治」,第六屆土壤污染防治研討會論文集,第19-36頁(1999)。
謝雲竹,「以紅樹林植物對遭受多環芳香烴(芘)污染土壤進行植物復育之研究」,碩士論文,國立中山大學海洋環境及工程學系,高雄(2008)。魏樹和、周啟星、張凱松,「根際圈在污染土壤復育中的作用與機理
分析」,農業環境保護,第四卷,第ㄧ期,第43-147頁 (2003)。
Arana, J., J.A. Herrera Melián, J.M. Doña Rodr´ýguez, O. González D´ýaz, A. Viera, J. Pérez Peña, P.M. Marrero Sosa, and V. Espino Jiménez, TiO2-photocatalysis as a tertiary treatment of naturally treated Wastewater. Catalysis Today 76, pp. 279–289 (2002).
Alkorta, C., Garbisu, Phytoremediation of organic contaminants in soils, Bioresour. Technol. 79, pp. 273–276 (2001).
Binet P., Portal J.M., Leyval C.,“Dissipation of 3-6 ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass,” Soil Biol Biochem Vol. 32, pp. 2011-2017 (2000).
Chen, Y., Banks, M.K., Schwab, A.P., Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.), Environ. Sci. Technol. 37, pp. 5778–5782 (2003).
Chinn, L. J. Selection of Oxidation in Synthesis- Oxidation at the Carbon Atom, Marcel Dekker Inc., New York, 72 (1991).
Chiou, C.T., and Schmedding, D.W.,“Partitioning of organiccompounds in octanol-water systems,”Environ. Sci. Technol., Vol. 16, pp. 4-10 (1982).
Cunningham, S.D., Anderson, T.A., Schwab, A.P., and Hsu, F.C.,“Phytoremediation of soils contaminated with organic pollutants,” Adv. Agron., Vol. 56, pp. 55-114 (1996).
Cunningham, S.D., D.W. Ow, Promises and prospects of phytoremediation, Plant Physiol. 110, pp. 715–719 (1996).
Daniel, R.O., John, R., and Ross, M.,“Polycyclic aromatic hydrocarbons in San Francisco Estuary sediments,”Mar. Chem., Vol. 86, pp. 169-184 (2004).
Daisey, J.M., Hodgson, A.T., Fisk, W.J., and Brinke, J.T.,“Volatile organic compounds in twelve california office building; classes, concert rations and sources,”Atmos. Environ., Vol. 28, pp. 3557-3562 (1994).
Decuypre, E. V., ”Isolation and characterisation of polycyclic aromatic hydrocarbon-degrading bacteria”, pp.25-40, 1998
Donnelly, P.K., Hegde, R.S., Fletcher, J.S., Growth of PCB degrading bacteria on compounds from photosynthetic plants, Chemosphere 28, pp. 981–988 (1994).Fan, S., Lee, P., Gong, Z., Ren, W., He N.,”Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.),”,Chemosphere , Vol.71, pp.1593-1598 (2008).
Ferro, A.M., Sims, R.C., and Bugbee, B.,“Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil,”J. Environ. Qual., Vol. 23, pp. 272-279 (1994).
Finalayson-Pitts, B.J., Pitts Jr. J.N., Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons and particles, Science 276, pp. 1045–1052 (1997).
Haeseler, F., Blanchet, D., Druelle, V., Werner, P. and Vandecasteele, J. P. Ecotoxicological assessment of soils of former manufactured gas plant sites (1999).
Henner, P., Schiavon, M., Morel, J.L., and Lichtfouse, E.,“Polycyclic Aromatic Hydrocarbon(PAHs) Occurrence and Remediation Methods,”Analusis Mag., Vol.25, No. 9-10, pp. 56-58 (1997).
Hoagland, R.E., Williams, R.D., The influence of secondary plant compounds on the associations of soil microorganisms and plant roots, in: The Chemistry of Allelopathy. Biochemical Interactions among Plants, American Chemical Society, Washington, DC, pp. 301–325 (1985).
Jian, Y., Wnag, L., Peter, P.F., and Yu, H.T.,“Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list, Mutat. Res.,”Vol. 557, pp. 99-108 (2004).
Joner, E. J. and Leyval, C. Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Environ. Sci. Technol. 37: 2, pp. 371–2 375 (2003).
Jokic, A., M. C. Wang, C. Liu, A. I. Frenkel, and P. M. Huang.
Integration of the polyphenol and Maillard reactions into a unified
abiotic pathway for humification in nature: the role of δ-MnO2.
Organic Geochem. 35, pp. 747-762 (2004).
Kaimi, E., T. Mukaidani, S. Miyeshi, M. Tamaki, Ryegrass enhancement of biodegradation in diesel-contaminated soil, Environ. Exp. Bot. 55, pp. 110–119. (2006).
Kraus, J.J. Munir, I.Z., McEldoon, J.P., Clark, D.S., Dordick, J.S., Oxidation of
polycyclic aromatic hydrocarbons catalyzed by soybean peroxidase, Appl.
Biochem. Biotechnol. 80 221–230. (1999).
Muratova A. Y., Turkovskaya O. V., Hűbner Kuschk P., “Studies of alfalfa and reed in the phytoremediation of hydrocarbon-polluted soil,”Appl. Biochem. Microbiol., Vol.39, pp.599-605 (2003).
Miller, M.M., Wasik, S.P., Huang, G.L., Shiu, W.Y., and Mackay, D.,“Ralationships between octanol-water partition coefficient and aqueous solubility,”Environ. Sci. Technol., Vol. 19, pp. 522-529 (1985).
Napola A., Pizzigallo M.D.R., Di Leo P., Spagnuolo M., Ruggiero P., “Mechanochemical approach to remove phenantherne from a contaminated soil,” Chemoshpere, Vol. 65, pp.1583-1590 (2006).
Pilon-Smits, E., Phytoremediation, Annu. Rev. Plant Biol. 56, 15–39(2005).
Pradhan, S.P., Conrad, J.R., Paterek, J.R., and Srivastava, V.J.,“Potential of phoytoremediation for treatment of PAHs in soil at MGP sites,”J. Soil Contam., Vol. 7, pp. 467-480 (1998).
Richter, H., and Howard, J.B.,“Formation of polycyclic aromatic hydrocarbons and their growth to soot a review of chemical reaction pathways,”Prog. Energy and Combust. Sci., Vol. 26, pp. 565-608 (2000).
Rezek J., Wiesche C., Mackova M., Zadrazil F., Macek T., “The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil,” Chemosphere, Vol.70, pp.1603-1608 (2008).
Ribes, A., Grimalt, J.O., and Garcia, C.J.T.,“Polycyclic aromatic hydrocarbons in mountain soils of the subtropical Atliantic,”J. Environ. Qual., Vol. 32, pp. 977-987 (2003).
Siciliano, S.D., Germida, J.J., Banks, M.K.,. Greer, C.W., Changes in microbial community composition and function during polyaromatic hydrocarbon phytoremediation field trial, Appl. Environ. Microbiol. 69, pp. 483–489 (2003).
Sardar, A.C., Muhammad, I.K., and Xiajin, T., Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea) (2008)
Sabljic, A., QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk, Chemosphere 43 ,pp. 363–375 (2001).
Takayuki , K., Ronald, R., Kenji, T., Yosuke, I, Influence of compost amendment on pyrene availability from artificially spiked soil to two subspecies of Cucurbita pepo (2008).
Voice, T.C., Rice, C.P., and Weber, W.J.,“Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems,”Environ. Sci. Technol., Vol. 17, pp. 513-518 (1983).
Xu, S. Y., Chen, Y. X., Lin, Q., Wu, W. X., Wang, D., Xue, S. G. and Shen, C. F. Remediation of phenanthreneand pyrene-contaminated soil by maize (Zea mays L.). Acta Pedol. Sin. (in Chinese). 43(2): 226–232 (2006).
Xu, S. Y., Chen, Y. X., Wu, W. X., Wang, K. X., Lin, Q. and Liang, X. Q. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci. Total Environ. 363: 206–215 (2009a).
Yan, J., Wang, L., Fu, P. P. and Yu, H. Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the USEPA priority pollutant list. Mutat. Res. 557: 99–108 (2004).
Yanzheng Gao and Lizhong Zhu Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils 55, pp. 1169–1178 (2004)
Zandere, M.,“Physical and Chemical Properties of Polycyclic Aromatic Hydrocarbons,”in: A. Bjorseth (Ed.), Handbook of Polycyclic Aromatic Hydrocarbons, Marcel Dekker, New York, pp. 1-25 (1983).