|
REFERENCES 1. Liao, S.F., et al., Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes. Proc Natl Acad Sci U S A, 2013. 110(34): p. 13809-14. 2. Hsu, H.Y., et al., Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways. J Immunol, 2004. 173(10): p. 5989-99. 3. Lin, Z.B., Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J Pharmacol Sci, 2005. 99(2): p. 144-53. 4. Yuen, J.W. and M.D. Gohel, Anticancer effects of Ganoderma lucidum: a review of scientific evidence. Nutr Cancer, 2005. 53(1): p. 11-7. 5. MB, S., - The war on cancer. Lancet, 1996. 347(9012): p. 1377-81. 6. Sharma, S.V., et al., Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer, 2007. 7(3): p. 169-81. 7. Baselga, J. and L. Norton, Focus on breast cancer. Cancer Cell, 2002. 1(4): p. 319-22. 8. Bos, P.D., et al., Genes that mediate breast cancer metastasis to the brain. Nature, 2009. 459(7249): p. 1005-9. 9. 行政院衛生署國民健康局, 99年癌症登記報告. 2013. 10. Ma, L., Role of miR-10b in breast cancer metastasis. Breast Cancer Res, 2010. 12(5): p. 210. 11. Gluz, O., et al., Triple-negative breast cancer--current status and future directions. Ann Oncol, 2009. 20(12): p. 1913-27. 12. Finn, R.S., et al., Estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor expression and benefit from lapatinib in a randomized trial of paclitaxel with lapatinib or placebo as first-line treatment in HER2-negative or unknown metastatic breast cancer. J Clin Oncol, 2009. 27(24): p. 3908-15. 13. Pohlmann, P.R., I.A. Mayer, and R. Mernaugh, Resistance to Trastuzumab in Breast Cancer. Clin Cancer Res, 2009. 15(24): p. 7479-7491. 14. Wang, S.E., The Functional Crosstalk between HER2 Tyrosine Kinase and TGF-beta Signaling in Breast Cancer Malignancy. J Signal Transduct, 2011. 2011: p. 804236. 15. Bhola, N.E., et al., TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest, 2013. 123(3): p. 1348-58. 16. Bendre, M., et al., Breast cancer metastasis to bone: it is not all about PTHrP. Clin Orthop Relat Res, 2003(415 Suppl): p. S39-45. 17. Moses, H. and M.H. Barcellos-Hoff, TGF-beta biology in mammary development and breast cancer. Cold Spring Harb Perspect Biol, 2011. 3(1): p. a003277. 18. Scollen, S., et al., TGF-beta signaling pathway and breast cancer susceptibility. Cancer Epidemiol Biomarkers Prev, 2011. 20(6): p. 1112-9. 19. Buck, M.B. and C. Knabbe, TGF-beta signaling in breast cancer. Ann N Y Acad Sci, 2006. 1089: p. 119-26. 20. Siegel, P.M. and J. Massague, Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer, 2003. 3(11): p. 807-21. 21. Galliher, A.J., J.R. Neil, and W.P. Schiemann, Role of transforming growth factor-beta in cancer progression. Future Oncol, 2006. 2(6): p. 743-63. 22. Wakefield, L.M. and A.B. Roberts, TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev, 2002. 12(1): p. 22-9. 23. Thiery, J.P. and J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 2006. 7(2): p. 131-42. 24. Kimchi, A., et al., Absence of TGF-beta receptors and growth inhibitory responses in retinoblastoma cells. Science, 1988. 240(4849): p. 196-9. 25. Tsuji, T., S. Ibaragi, and G.F. Hu, Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res, 2009. 69(18): p. 7135-9. 26. Padua, D. and J. Massague, Roles of TGFbeta in metastasis. Cell Res, 2009. 19(1): p. 89-102. 27. Zhang, Y.E., Non-Smad pathways in TGF-beta signaling. Cell Res, 2009. 19(1): p. 128-39. 28. Le Scolan, E., et al., Transforming growth factor-beta suppresses the ability of Ski to inhibit tumor metastasis by inducing its degradation. Cancer Res, 2008. 68(9): p. 3277-85. 29. Lu, J., et al., 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell, 2009. 16(3): p. 195-207. 30. Huber, M.A., N. Kraut, and H. Beug, Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol, 2005. 17(5): p. 548-58. 31. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90. 32. Chen, Y.G. and A.M. Meng, Negative regulation of TGF-beta signaling in development. Cell Res, 2004. 14(6): p. 441-9. 33. Hershko, A., A. Ciechanover, and A. Varshavsky, Basic Medical Research Award. The ubiquitin system. Nat Med, 2000. 6(10): p. 1073-81. 34. Pickart, C.M., Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001. 70: p. 503-33. 35. Nakayama, K.I. and K. Nakayama, Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer, 2006. 6(5): p. 369-81. 36. Kavsak, P., et al., Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell, 2000. 6(6): p. 1365-75. 37. Zhu, L., et al., Tollip, an intracellular trafficking protein, is a novel modulator of the transforming growth factor-beta signaling pathway. J Biol Chem, 2012. 287(47): p. 39653-63. 38. Hsu, H.Y., et al., Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGFbeta receptor degradation in breast cancer. Carcinogenesis, 2013. 34(4): p. 874-84. 39. Hsu, H.Y., et al., Fucoidan inhibition of lung cancer in vivo and in vitro : role of the Smurf2-dependent ubiquitin proteasome pathway in TGFbeta receptor degradation. Oncotarget, 2014. 5(17): p. 7870-85. 40. Le Roy, C. and J.L. Wrana, Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol, 2005. 6(2): p. 112-26. 41. Balogh, P., S. Katz, and A.L. Kiss, The role of endocytic pathways in TGF-beta signaling. Pathol Oncol Res, 2013. 19(2): p. 141-8. 42. Huang, F. and Y.G. Chen, Regulation of TGF-beta receptor activity. Cell Biosci, 2012. 2: p. 9. 43. Chu, Y.W., et al., Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol, 1997. 17(3): p. 353-60. 44. Santini, D., et al., Zoledronic acid exhibits inhibitory effects on osteoblastic and osteolytic metastases of prostate cancer. Clin Cancer Res, 2003. 9(8): p. 3215; author reply 3216. 45. Zuo, W. and Y.G. Chen, Specific activation of mitogen-activated protein kinase by transforming growth factor-beta receptors in lipid rafts is required for epithelial cell plasticity. Mol Biol Cell, 2009. 20(3): p. 1020-9. 46. Naldini, L., et al., In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 1996. 272(5259): p. 263-7. 47. Miyoshi, H., et al., Development of a self-inactivating lentivirus vector. J Virol, 1998. 72(10): p. 8150-7. 48. Kafri, T., et al., A packaging cell line for lentivirus vectors. J Virol, 1999. 73(1): p. 576-84. 49. Chou, T.C. and P. Talalay, Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul, 1984. 22: p. 27-55. 50. Wang, Y.Y., et al., Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg Med Chem, 2002. 10(4): p. 1057-62. 51. Chen, H.S., et al., Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides. Bioorg Med Chem, 2004. 12(21): p. 5595-601. 52. Voulgari, A. and A. Pintzas, Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta, 2009. 1796(2): p. 75-90. 53. Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54. 54. Yang, J. and R.A. Weinberg, Epithelial-Mesenchymal Transition: At the Crossroads of Development and Tumor Metastasis. Developmental cell, 2008. 14(6): p. 818-829. 55. Dumont, N. and C.L. Arteaga, Targeting the TGF beta signaling network in human neoplasia. Cancer Cell, 2003. 3(6): p. 531-6. 56. Sterlacci, W., et al., High transforming growth factor beta expression represents an important prognostic parameter for surgically resected non-small cell lung cancer. Hum Pathol, 2012. 43(3): p. 339-49. 57. Fenteany, G. and S. Zhu, Small-molecule inhibitors of actin dynamics and cell motility. Curr Top Med Chem, 2003. 3(6): p. 593-616. 58. Price, J.T. and E.W. Thompson, Mechanisms of tumour invasion and metastasis: emerging targets for therapy. Expert Opin Ther Targets, 2002. 6(2): p. 217-33. 59. Miyazaki, T. and M. Nishijima, Studies on fungal polysaccharides. XXVII. Structural examination of a water-soluble, antitumor polysaccharide of Ganoderma lucidum. Chem Pharm Bull (Tokyo), 1981. 29(12): p. 3611-6. 60. Gao, Y., et al., Effects of ganopoly (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol Invest, 2003. 32(3): p. 201-15. 61. Chang, R., The central importance of the beta-glucan receptor as the basis of immunologic bioactivity of Ganoderma polysaccharides, ed. T. Mizuno, Kim, B. K. 1996: Seoul: II Yang Press. 177-179. 62. Czop, J.K. and K.F. Austen, A beta-glucan inhibitable receptor on human monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. J Immunol, 1985. 134(4): p. 2588-93. 63. Kong, F., et al., Plasma transforming growth factor-beta1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma. Cancer, 1999. 86(9): p. 1712-9. 64. Hasegawa, Y., et al., Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer, 2001. 91(5): p. 964-71. 65. Saji, H., et al., Significance of expression of TGF-beta in pulmonary metastasis in non-small cell lung cancer tissues. Ann Thorac Cardiovasc Surg, 2003. 9(5): p. 295-300. 66. Yingling, J.M., K.L. Blanchard, and J.S. Sawyer, Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov, 2004. 3(12): p. 1011-22. 67. Massagué, J., TGFβ in Cancer. Cell, 2008. 134(2): p. 215-230. 68. Lin, Y.S., et al., Effects of dietary flavonoids, luteolin, and quercetin on the reversal of epithelial-mesenchymal transition in A431 epidermal cancer cells. Cancer Sci, 2011. 102(10): p. 1829-39. 69. Anand-Apte, B. and B. Zetter, Signaling mechanisms in growth factor-stimulated cell motility. Stem Cells, 1997. 15(4): p. 259-67. 70. Xu, C.C., et al., Effects of TGF-beta signaling blockade on human A549 lung adenocarcinoma cell lines. Mol Med Rep, 2011. 4(5): p. 1007-15. 71. Jin, C., et al., Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness. Cancer Res, 2009. 69(3): p. 735-40. 72. Lin, X., M. Liang, and X.H. Feng, Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem, 2000. 275(47): p. 36818-22. 73. Izzi, L. and L. Attisano, Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene, 2004. 23(11): p. 2071-8. 74. Glasgow, E. and L. Mishra, Transforming growth factor-beta signaling and ubiquitinators in cancer. Endocr Relat Cancer, 2008. 15(1): p. 59-72. 75. Gupta, G.P. and J. Massague, Cancer metastasis: building a framework. Cell, 2006. 127(4): p. 679-95. 76. Kang, J.S., C. Liu, and R. Derynck, New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol, 2009. 19(8): p. 385-94. 77. Kretzschmar, M., et al., A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev, 1999. 13(7): p. 804-16. 78. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74. 79. Pulaski, B.A. and S. Ostrand-Rosenberg, Mouse 4T1 breast tumor model. Curr Protoc Immunol, 2001. Chapter 20: p. Unit 20 2. 80. Xu, J., S. Lamouille, and R. Derynck, TGF-beta-induced epithelial to mesenchymal transition. Cell Res, 2009. 19(2): p. 156-72. 81. Batlle, E., et al., The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol, 2000. 2(2): p. 84-9. 82. Zuo, W., et al., c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-beta type II receptor. Mol Cell, 2013. 49(3): p. 499-510. 83. Itoh, S. and P. ten Dijke, Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol, 2007. 19(2): p. 176-84. 84. Dragowska, W.H., et al., The combination of gefitinib and RAD001 inhibits growth of HER2 overexpressing breast cancer cells and tumors irrespective of trastuzumab sensitivity. BMC Cancer, 2011. 11: p. 420. 85. Ogunjimi, A.A., et al., Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell, 2005. 19(3): p. 297-308. 86. Zhang, G. and S. Ghosh, Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem, 2002. 277(9): p. 7059-65. 87. Yang, C.X., C.Y. Li, and W. Feng, Toll-like receptor 4 genetic variants and prognosis of breast cancer. Tissue Antigens, 2013. 81(4): p. 221-6. 88. Ahmed, A., H.P. Redmond, and J.H. Wang, Links between Toll-like receptor 4 and breast cancer. Oncoimmunology, 2013. 2(2): p. e22945. 89. Rajput, S., L.D. Volk-Draper, and S. Ran, TLR4 is a novel determinant of the response to paclitaxel in breast cancer. Mol Cancer Ther, 2013. 12(8): p. 1676-87. 90. Hua, K.-F., et al., Ganoderma lucidum polysaccharides enhance CD14 endocytosis of LPS and promote TLR4 signal transduction of cytokine expression. Journal of Cellular Physiology, 2007. 212(2): p. 537-550. 91. Zavadil, J. and E.P. Bottinger, TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 2005. 24(37): p. 5764-74. 92. Lamouille, S. and R. Derynck, Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol, 2007. 178(3): p. 437-51. 93. Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev, 2006. 58(3): p. 621-81.
|