|
[1] L. Goldberg, R. Reedy, and S. H. Lee, ”Silicon Photodiode for Optical Channel Waveguides.”, Applied Physics Letters, Vol. 37, p.195-197, 1980. [2] M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, ”Room-Temperature Operation of An InGaAsP Double-Heterostructure Laser Emitting at 1.55µm on a Si Substrate”, Applied Physics Letters, Vol.57, No.6, pp.593-595, 1990. [3] P. Äyräs, G. N. Conti, S. Honkanen, and N. Peyghambarian, “Birefringence Control for Ion-Exchanged Channel Glass Waveguides.”, Applied Optics, Vol.37, No.36, 1998. [4] B. J. Luff, J. S. Wilkinson, J.Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated Mach-Zehnder Biosensor.”, Journal of Lightwave Technology, Vol.16, No.4, pp.583-592, 1998. [5] D. H. Naghski, J. J. Boyal, H. E. Jackson, S. Sriram, S. A. Kingsley, and J. Latess, “An integrated photonic Mach-Zehnder Interferometer with the No Electrodes for Sensing Electric Fields.”, Journal of Lightwave Technology, Vol.12, No. 6, p.1092-1097, 1994. [6] H. Porte, V. Gorel, S. Kiryenko, J. P. Goedgebuer, W. Daniau, and P. Blind, “Imbalanced Mach-Zehnder Interferometer Integrated in Micro Machined Silican Substrate for Pressure Sensor.”, Journal of Lightwave Technology, Vol.17, No.2, p.229-233, 1999. [7] T. R. Volk, V. I. Pryalkin and N. M. Rubinina, ”Optical-Damage Resistant LiNbO3:Zn Crystal.” Optical Letter, Vol.15, No.13, pp996-998, 1990. [8] Takumi Fujiwara, Xiaofan Cao, Ramakant Srivastava, and Ramu V. Ramaswamy, “Photorefractive Effect in Annealed Proton-Exchanged LiNbO3 Waveguides.”, Applied Physics Letters, Vol.61, No.7, pp.195-197, 1992. [9] T. Fujiwara, X. F. Cao, R. V. Ramaswamy, “Photorefractive Effect in Annealed Proton-Exchanged LiTaO3 Waveguides.”, IEEE Transactions on Automatic Control, Vol.5, No.9, 1993. [10] W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. E. Digonnet, and H. J. Shaw, “Photorefractive-Damage-Resistant Zn-Diffused Waveguides in MgO:LiNbO3.”, Optical Letter, Vol.16, No.13, pp.995-997, 1991. [11] L. Pálfalvi, J. Hebling, G. Almási, Á. Péter and K. Polgár, “Refractive index changes in Mg-doped LiNbO3 caused by Photofraction and Thermal Effects.”, Journal of Optics A: Pure and Applied Optics, No.5 pp.280-283, 2003. [12] T. R. Volk, N. M.Rubinina, M. Woehlecke, “Optical-Damage-Resistant Impurities in Lithium Niobate.”, Journal of the Optical Society of America B, Vol.11, No.9, pp.1681-1687, 1994. [13] Y. Kong, J. Wen, H. Wang, “New Doped Lithium Niobate Crystal with High Resistance to Photorefraction LiNbO3:In”, Applied Physics Letters, Vol.66, No.3, pp.280-281, 1995. [14] Y. Shigematsu, M. Fujimura and T. Suhara, "Fabrication of LiNbO3 TE/TM Waveguides for 1.5mm Wavelength Bband by Zn/Ni Diffusion in Low-Pressure Atmosphere.", Japanese Journal of Applied Physics, vol. 41, pt. 1, no. 7B, pp. 4825-4827, 2002. [15] T. Suhara, T. Fujieda, M. Fujimura and H. Nishihara, “Fabrication of Zn:LiNbO3 Waveguides by Diffusing ZnO in Low-Pressure Atmosphere.”, Japanese Journal of Applied Physics, vol.39, Part. 2, No.8B, pp.864-865, 2000. [16] J. S. Selvan, M. Fujimura and T. Suhara, “Fabrication of Zn-indiffused LiNbO3 Optical Waveguides by Diffusing Sol-Gel Spin-Coated ZnO Film at Low-Pressure Atmosphere.”, Japanese Journal of Applied Physics, Vol. 43, Part.1, No.8A, pp.5313-5315, 2004. [17] J. S. Selvan, M. Fujimura and T. Suhara, “Fabrication of Zn-Indiffused LiNbO3 Optical Waveguides Using ZnS as Diffusion Source.”, Japanese Journal of Applied Physics, Vol.44, Part.1, No.5A, pp.3075-3076, 2005. [18] I. Song H. Shin M. Cheong, J. Myoung, M. Lee "Diffusion of Zn in Stoichiometric LiTaO3", Journal of Crystal Growth, Vol.270, No.3-4, pp.568-572, 2004. [19] Y. Shigematsu, M. Fujimura and T. Suhara, “Fabrication of LiNbO3 TE/TM Waveguides for 1.5μm Wavelength Band by Zn/Ni Diffusion in Low-Pressure Atmosphere.”, Japanese Journal of Applied Physics, Vol.41, No.7B, pp.4825-4827, 2002. [20] T. Suhara, T. Fujieda, M. Fujimura and H. Nishihara, “Fabrication of Zn:LiNbO3 Waveguides by Diffusing ZnO in Low-Pressure Atmosphere.”, Japanese Journal of Applied Physics, Vol.39, Vo.8B, pp.L864-L865, 2000. [21] R. C. Twu, C. C. Huang, and W. S. Wang, “Zn Indiffusion Waveguide Polarizer on a Y-cut LiNbO3 at 1.32 μm Wavelength.”, IEEE Photonics Technology Letters, Vol.12, No.2, pp.161-163, 2000. [22] N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue, Y. Shigesato, "Electrical and Optical Properties of Amorphous Indium Zinc Oxide Films", Thin Solid Films, No.496, No.1, pp.99-103, 2006. [23] S. B. Qadri, H. Kim, H. R. Khanc, A. Piqué, J. S. Horwitza, D. Chrisey, W. J. Kim, E. F. Skelton, "Transparent Conducting Films of In2O3-ZrO2, SnO2-ZrO2 and ZnO-ZrO2", Thin Solid Films, Vol.377-378, No.1, pp.750-754, 2000. [24] Jin-Hong Lee, Byung-Ok Park, "Transparent Conducting In2O3 Thin Films Prepared by Ultrasonic Spray Pyrolysis.", Surface and Coatings Technology Vol.184, No.1, pp.102-107, 2004. [25] Dong-Ho Kim, Mi-Rang Park, Gun-Hwan Lee, "Preparation of High Quality ITO Films on A Plastic Substrate Using RF Magnetron Sputtering", Surface & Coatings Technology, Vol.201, No.3-4, pp.927–931, 2006. [26] Wikipedia, “Lithium niobate”, http://en.wikipedia.org/wiki/LiNbO3 [27] 胡明理, “Zn:LiNbO3之晶體生長與其特性研究”, 中央大學光電科學所, 2004 [28] Almaz Optics, Inc. “Lithium Niobate, LiNbO3”, http://www.almazoptics.com/ LiNbO3.htm [29] 孫慶成, 光電概論, p.7-19-p.7-22 [30] Wikipedia, “非線性光學”, http://zh.wikipedia.org/w/index.php?title=%E9%9D %9E%E7%BA%BF%E6%80%A7%E5%85%89%E5%AD%A6&variant=zh-tw [31] L. Arizmendi, “Photonic Applications of Lithium Niobate Crystals.”, Physica Status Solidi (a), Vol.201, No.2, pp.253-283, 2004. [32] C. Gu, Y. Liu, Y. Xu, J. J. Pan, Fengqing Zhou, and Henry He, “Photorefractive Materials and Devices are Becoming Viable Alternatives for Information Systems.”, IEEE Circuits & Devices Magazine, Vol.19, No.11, pp.17-23, 2003. [33] S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced Photorefractive Properties of LiNbO3:Fe Crystals by HfO2 Codoping”, Applied Physics Letters, Vol 89, No.10, id.101126, 2006. [34] P. Minzioni, L. Razzari, I. Cristiani, V. Degiorgio, “Photorefractivity of Hafnium-doped Congruent Lithium Niobate Crystals.”, Applied Physics Letters, Vol 86, No. 13, id.131914, 2005. [35] Z. Xu, S. Xu, J. Zhang, X. Liu, Y. Xu, ”Growth and Photorefractive Properties of In:Fe:LiNbO3 Crystals with Various [Li]/[Nb] Ratios.”, Journal of Crystal Growth, Vol.280,No.1-2, pp.227-233, 2005. [36] Z. Sun, H. Li, W. Cai, L. Zhao, “Studies of Photorefractive Fields of MnO Doped Near Stoichiometric LiNbO3 Crystals.”, Optics Communications, Vol.242, No. 1-3, pp.253-257, 2004. [37] F. Schiller, B. Herreros, and G. Lifante, “Optical Characterization of Vapor Zn-diffused Waveguides in Lithium Niobate.”, Journal of the Optical Society of America A, Vol.14, No.2, pp.425-429, 1997. [38] O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, R. R. Neurgaonkar, “Comparision of Photorefractive Damage Effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 Optical Waveguides at 488nm Wavelength.”, Applied Physics Letters, Vol.71, No.21, 1997. [39] R. C. Twu, C. Y. Yang, H. H. Lee, and H. Y. Hong, “Thermal Diffusion of In2O3 in LiNbO3 Substrate.”, 2006 International Symposium on Nano Science and Technology, pp.218-219, 南台科技大學, Tainan, Taiwan, 2006.
|