|
[1] Kar, A., Deb, K.: Moving cast shadow detection and removal from video based on hsv color space. In: Proc. Int. Conf. Electrical Engineering and Information Communication Technology (ICEEICT), IEEE (2015) 1–6 [2] Yi, S., Li, H., Wang, X.: Understanding pedestrian behaviors from stationary crowd groups. In: Proc. Computer Vision and Pattern Recognition(CVPR), IEEE (2015) 3488–3496 [3] Belardinelli, A., Pirri, F., Carbone, A.: Motion saliency maps from spatiotemporal filtering. In: Proc. Int. Workshop on Attention in Cognitive Systems (WAPCV), IEEE (2009) 112–123 [4] Zhang, Y., Kiselewich, S.J., Bauson, W.A., Hammoud, R.: Robust moving object detection at distance in the visible spectrum and beyond using a moving camera. In: Proc. Conf. Computer Vision and Pattern Recognition Workshop (CVPRW’06), IEEE (2006) 131 [5] Wang, J., Bebis, G., Miller, R.: Robust video-based surveillance by integrating target detection with tracking. In: Proc. Conf. Computer Vision and Pattern Recognition Workshop (CVPRW’06), IEEE (2006) 137 [6] Sheng, H., Li, C., Wei, Q., Xiong, Z.: Real-time detection of abnormal vehicle events with multi-feature over highway surveillance video. In: Proc. Int. Conf. Intelligent Transportation Systems, IEEE (2009) 550–556 [7] Sheng, H., Li, C., Wei, Q., Xiong, Z.: An approach to motion vehicle detection in complex factors over highway surveillance video. In: Proc. Int. Conf. Computational Sciences and Optimization (CSO), IEEE (2009) 520–523 [8] Chen, Y.: Study of moving object detection in intelligent video surveillance system. In: Proc. Int. Conf. Computer Engineering and Technology (ICCET), IEEE (2010) V7–62–V7–66 [9] Saran, K.B., Sreelekha, G.: Tra c video surveillance: Vehicle detection and classifica- tion. In: Proc. Int. Conf. Control Communication and Computing India (ICCC), IEEE (2015) 516–521 [10] Zhan, J., Zhang, H., Luo, X.: Fine-grained vehicle recognition via detection- classification-tracking in surveillance video. In: Proc. Int. Conf. Digital Home (ICDH), IEEE (2014) 14–19 [11] Ding, Z., Zhang, C., Zheng, S., Zhi, C.: Semantic description and tra c event detection modeling for surveillance video. In: Proc. Int. Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), IEEE (2013) 1–5 [12] Chen, C.T., Chen, Y.S.: Real-time approaching vehicle detection in blind-spot area. In: Proc. Int. Conf. Intelligent Transportation Systems, IEEE (2009) 1–6 [13] Zaihidee, E.M., Ghazali, K.H., Almisreb, A.A.: Comparison of human segmentation using thermal and color image in outdoor environment. In: Proc. Int. Conf. Systems, Process and Control (ICSPC), IEEE (2015) 152–156 [14] Zhang, L., Wang, C.: Shadow detection method in video surveillance system. In: Proc. Int. Conf. Electrical and Control Engineering (ICECE), IEEE (2010) 1892–1895 [15] Zhang, X., Li, H., Qi, Y., Leow, W.K.: Rain removal in video by combining temporal and chromatic properties. In: Proc. Int. Conf. Multimedia and Expo, IEEE (2006) 461–464 [16] Park, W.J., Lee, K.H.: Rain removal using kalman filter in video. In: Proc. Int. Conf. Smart Manufacturing Application (ICSMA), IEEE (2008) 494–497 [17] Garg, K., Nayar, S.K.: Detection and removal of rain from videos. In: Proc. Conf. Computer Vision and Pattern Recognition (CVPR), IEEE (2004) I–528–I–535 Vol.1 [18] Yang, Y., Guohui, T., Liu, Y.X.: A fast background estimation method for vehi- cle surveillance. In: Proc. Int. Conf. Mechanic Automation and Control Engineering (MACE), IEEE (2010) 1647–1650 [19] Varghese, A., Sreelekha, G.: Background subtraction for vehicle detection. In: Proc. Global Conf. PaCommunication Technologies (GCCT), IEEE (2015) 380–382 [20] Lu, X., Izumi, T., Takahashi, T., Wang, L.: Moving vehicle detection based on fuzzy background subtraction. In: Proc. Int. Conf. Fuzzy Systems (FUZZ-IEEE), IEEE (2014) 529–532 [21] Stau↵er, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proc. Computer Vision and Pattern Recognition(CVPR). Volume 2., IEEE (1999) 1063–6919 [22] Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proc. Int. Conf. Pattern Recognition(ICPR). Volume 2., IEEE (2004) 28–31 [23] Feris, R.S., Siddiquie, B., Petterson, J., Zhai, Y., Datta, A., Brown, L.M., Pankanti, S.: Large-scale vehicle detection, indexing, and search in urban surveillance videos. In: IEEE Tran. Multimedia. Volume 14., IEEE (2012) 28–42 [24] Tuzel, O., Porikli, F., Meer, P.: A bayesian approach to background modeling. In: Proc. Computer Vision and Pattern Recognition(CVPR), IEEE (2005) 58–58 [25] Gallego, J., Pards, M., Haro, G.: Bayesian foreground segmentation and tracking using pixel-wise background model and region based foreground model. In: Proc. Int. Conf. Image Processing (ICIP), IEEE (2009) 3205–3208 [26] Zhao, Y., Liu, W.: Fast robust foreground-background segmentation based on variable rate codebook method in bayesian framework for detecting objects of interest. In: Proc. Int. Congress Image and Signal Processing (CISP), IEEE (2014) 55–59 [27] Godbehere, A.B., Matsukawa, A., Goldberg, K.: Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. In: Proc. American Control Conference, IEEE (2012) 4305–4312 [28] Anandhalli, M., Baligar, V.P.: Improvised approach using background subtraction for vehicle detection. In: Proc Int. Advance Computing Conference (IACC), IEEE (2015) 303–308 [29] Ahmad, K.A., Saad, Z., Abdullah, N., Hussain, Z.: Moving vehicle segmentation in a dynamic background using self-adaptive kalman background method. In: Proc. Int. Colloquium Signal Processing and its Applications (CSPA), IEEE (2011) 439–442 [30] Lei, M., Lefloch, D., Gouton, P., Madani, K.: A video-based real-time vehicle counting system using adaptive background method. In: Proc. Int. Conf. Signal Image Technol- ogy and Internet Based Systems(SITIS), IEEE (2008) 523–528 [31] Chen, R., Wu, Q.: Moving vehicle detection based on optical flow estimation of edge. In: Proc. Int. Conf. Natural Computation (ICNC), IEEE (2015) 754–758 [32] Senst, T., Eiselein, V., Sikora, T.: Robust local optical flow for feature tracking. In: IEEE Tran. Circuits and Systems for Video Technology. Volume 22., IEEE (2012) 1377– 1387 [33] Zhang, Z., Hou, Y., Wang, Y., Qin, J.: A tra c flow detection system combining optical flow and shadow removal. In: Chinese Conf. Intelligent Visual Surveillance (IVS), IEEE (2011) 45–48 [34] Ho, H.W., Wagter, C.D., Remes, B.D.W., de Croon, G.C.H.E.: Optical flow for self- supervised learning of obstacle appearance. In: Proc. Int. Conf. Intelligent Robots and Systems (IROS), IEEE (2015) 3098–3104 [35] Schmitt, J., Starck, J.L., Casandjian, J.M., Fadili, J., Grenier, I.: Multichannel poisson denoising and deconvolution on the sphere : Application to the fermi gamma ray space telescope. In: Astron Astrophys. (2012) [36] Cheng, C.M., Xie, L., Pachoud, A., Moser, H., Chen, W., Wee, A., Neto, A.C., Tsuei, K.D., zyilmaz, B.: Anomalous spectral features of a neutral bilayer graphene. In: Scientific Reports 5, Article number: 10025. (2015) [37] Seibold, G., Castro, C.D., Grilli, M., Lorenzana, J.: Spin excitations of ferronematic order in underdoped cuprate superconductors. In: Scientific Reports 4, Article number: 5319. (2014) [38] Sina, I., Wibisono, A., Nurhadiyatna, A., Hardjono, B.: Vehicle counting and speed measurement using headlight detection. In: Proc. Conf. Advanced Computer Science and Information Systems (ACSIS), IEEE (2013) 149–154 [39] Pan, X., Guo, Y., Men, A.: Tra c surveillance system for vehicle flow detection. In: Proc. Int. Conf. Computer Modeling and Simulation, IEEE (2010) 314–318 [40] Guo, J.M., Hsia, C.H., Wong, K., Wu, J.Y.: Nighttime vehicle lamp detection and tracking with adaptive mask training. In: IEEE Tran. Vehicular Technology, IEEE (2015) 4023–4032 [41] Miller, N., Thomas, M.A., Eichel, J.A., Mishra, A.: A hidden markov model for vehicle detection and counting. In: Proc. Conf. Computer and Robot Vision (CRV), IEEE (2015) 269–276 [42] Seenouvong, N., Watchareeruetai, U., Nuthong, C., Khongsomboon, K.: A computer vision based vehicle detection and counting system. In: Proc. Int. Conf. Knowledge and Smart Technology (KST), IEEE (2016) 224–227 [43] Silver, N.: The Signal and the Noise: Why So Many Predictions Failbut Some Dont. Penguin Books (2015) [44] Lin, D., Chen, C.: Intelligent video surveillance elderly fall detection. In: Proc. Conf. Computer Vision, Graphics and Image Processing(CVGIP), IPPR (2013) 64 [45] Pornpanomchai, C., Liamsanguan, T., Vannakosit, V.: Vehicle detection and counting from a video frame. In: Proc. Int. Conf. Wavelet Analysis and Pattern Recognition, IEEE (2008) 356–361 [46] Zheng, J., Wang, Y., Zeng, W.: Cnn based vehicle counting with virtual coil in tra c surveillance video. In: Proc. Int. Conf. Multimedia Big Data (BigMM), IEEE (2015) 280–281 [47] Yuan, Y., Zhao, Y., Wang, X.: Day and night vehicle detection and counting in complex environment. In: Proc. Int. Conf. Image and Vision Computing New Zealand (IVCNZ), IEEE (2013) 453–458 [48] Tourani, A., Shahbahrami, A.: Vehicle counting method based on digital image process- ing algorithms. In: Proc. Int. Conf. Pattern Recognition and Image Analysis (IPRIA), IEEE (2015) 1–6 [49] Song, J., Song, H., Wang, W.: An accurate vehicle counting approach based on block background modeling and updating. In: Proc. Int. Conf. Image and Signal Processing (CISP), IEEE (2014) 16-21
|