1.王慧媛。2010。植物工廠內波士頓萵苣立體化栽培模式之探討。 臺灣大學生物產業機電工程學研究所學位論文。1-67。
2.古在豐樹。2009。人工光型植物工廠。方煒譯。2012。財團法人豐年社。
3.李萍萍、 胡永光、赵玉国、 毛罕平。2001。葉用莴苣温室栽培单株光合作用日变化规律。园艺学报。28(3),240-245。
4.沈再發、 許淼淼。1991。蕹菜水耕之養液試驗。中華農業研究。40(4), 407-416。5.余津聚。2012。水耕葉菜類營養元素吸收之研究。國立中興大學園藝學系研究所學位論文。
6.高辻正基。2007。完全控制型植物工廠。方煒譯。2011。初版。台北:著。財團法人豐年社。
7.陳世銘、方煒、羅筱鳳、曹幸之、張耀乾、廖國基、蔡兆胤。2011。台灣植物工廠現況與發展策略之分析。農業機械學刊。20(4), 95-106.
8.黃昭霖。2013。降低植物工廠內萵苣能源消耗之探討-以變動光量或變動二氧化碳濃度之即時調控為策略。宜蘭大學生物機電工程學研究所學位論文。1-51。
9.張明毅、歐哲宇、鍾興穎、鄔家琪、方煒。2010。調控綠光比例對萵苣生長之影響。2010年農機與生機論文發表會。屏東。
10.張家瑝、方煒。2014。植物工廠小白菜量產之探討。2014年農機與生機論文發表會。臺中。
11.張祖亮。設施生產自動化技術 第八章 養液栽培之應用技術。網路引用 : http://www.ecaa.ntu.edu.tw/weifang/hort/main.html 。上網日期 : 2016/06/28。
12.曾政鴻、金安兒。2001。水耕蔬菜礦物質含量的探討。農林學報。50(1)。49-59。13.鄔家琪、張明毅、郭尚霖、邱芳瑜、吳明憲。2014。不同光量與二氧化碳濃度對萵苣光合作用速率之影響。2014年農機與生機論文發表會。台中。
14.劉冠伶。2011。植物工廠量產低硝酸鹽萵苣之研究。臺灣大學生物產業機電工程學研究所學位論文。1-61。
15.劉冠伶、方煒。2011。植物工廠量產低硝酸鹽波士頓萵苣之研究。2011年農機與生機論文發表會。嘉義。
16.簡君良、張明毅、方煒。2008。立體化植物栽培環控室之建立。2008年農機與生機論文發表會論文集:463-468。
17.Bugbee, B. 2003. Nutrient management in recirculating hydroponic culture. Paper presented at the South Pacific Soilless Culture Conference-SPSCC 648.
18.Both, A., Albright, L., Langhans, R., Reiser, R., and Vinzant, B. 1994. Hydroponic lettuce production influenced by integrated supplemental light levels in a controlled environment agriculture facility: experimental results. Paper presented at the III International Symposium on Artificial Lighting in Horticulture 418.
19.Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
20.Caruso, G., Villari, G., Melchionna, G., and Conti, S. 2011. Effects of cultural cycles and nutrient solutions on plant growth, yield and fruit quality of alpine strawberry (Fragaria vesca L.) grown in hydroponics. Scientia Horticulturae, 129(3), 479-485.
21.Fu, W., Li, P., and Wu, Y. 2012. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Scientia Horticulturae, 135(0), 45-51.
22.He, J., Austin, P. T., Nichols, M. A., and Lee, S. K. 2007. Elevated root-zone CO2 protects lettuce plants from midday depression of photosynthesis. Environmental and Experimental Botany, 61(1), 94-101.
23.Hopkins, W.G., and N.P.A. Hunter. 2008. Introduction to plant physiology. 4th edition. London: Wiley and Son.
24.Kitaya, Y., Niu, G., Kozai, T., and Ohashi, M. 1998. Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants. HortScience, 33(6), 988-991.
25.Kozai, T. 2013. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proceedings of the Japan Academy. Series B, Physical and biological sciences.
26.Lee, Y., and Park, M. 1999. Effects of CO2 concentration, light intensity and nutrient level on growth of leaf lettuce in a plant factory. Paper presented at the International Symposium on Growing Media and Hydroponics 548.
27.Lee, J. G., Lee, B. Y., and Lee, H. J. 2006. Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Scientia Horticulturae, 110(2), 119-128.
28.Levine, L. H., and Paré, P. W. 2009. Antioxidant capacity reduced in scallions grown under elevated CO2 independent of assayed light intensity. Advances in Space Research, 44(8), 887-894.
29.Liopa-Tsakalidi, A., Barouchas, P., and Salahas, G. 2015. Response of zucchini to the electrical conductivity of the nutrient solution in hydroponic cultivation. Agriculture and Agricultural Science Procedia, 4, 459-462.
30.Morris, D. L. 1948. Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. American Association for the Advancement of Science. Science, 107, 254-255.
31.Pérez-López, U., Miranda-Apodaca, J., Muñoz-Rueda, A., and Mena-Petite, A. 2013. Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2. Journal of Plant Physiology, 170(17), 1517-1525.
32.Pérez-López, U., Miranda-Apodaca, J., Muñoz-Rueda, A., and Mena-Petite, A. 2015. Interacting effects of high light and elevated CO2 on the nutraceutical quality of two differently pigmented Lactuca sativa cultivars (Blonde of Paris Batavia and Oak Leaf). Scientia Horticulturae, 191(0), 38-48.
33.Proietti, S., Moscatello, S., Giacomelli, G. A., and Battistelli, A. 2013. Influence of the interaction between light intensity and CO2 concentration on productivity and quality of spinach (Spinacia oleracea L.) grown in fully controlled environment. Advances in Space Research, 52(6), 1193-1200.
34.Shen, Y. Z., Guo, S. S., Ai, W. D., and Tang, Y. K. 2014. Effects of illuminants and illumination time on lettuce growth, yield and nutritional quality in a controlled environment. Life Sciences in Space Research, 2, 38-42.
35.Stagnari, F., Galieni, A., and Pisante, M. 2015. Shading and nitrogen management affect quality, safety and yield of greenhouse-grown leaf lettuce. Scientia Horticulturae, 192, 70-79.
36.Tong, Y., Yang, Q., and Shimamura, S. 2013. Analysis of Electric-Energy Utilization Efficiency in a Plant Factory with Artificial Light for Lettuce Production. Paper presented at the International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037.
37.Wintermans, J., and De Mots, A. 1965. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA) - Biophysics including Photosynthesis, 109(2), 448-453.
38.Xu, S., Zhu, X., Li, C., and Ye, Q. 2014. Effects of CO2 enrichment on photosynthesis and growth in Gerbera jamesonii. Scientia Horticulturae, 177, 77-84.