|
中文參考文獻 吳萬億, & 林清河. (2000). 企業研究方法. 臺北市: 華泰文化. 林震岩. (2006). 多變量分析: SPSS 的操作與應用. 台北市: 智勝文化. 劉軍. (2009). 整體網分析講義: UCINET 軟件實用指南. 上海市: 格致. 黃馨儀. (2014,5月)。 近場通訊研究內涵與其相關研究領域。 論文發表於中華民國第二十五屆國際資訊管理學術研討會,臺中市國立中興大學資訊管理學系。 英文參考文獻 Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389-2404. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1–7), 107-117. Carletta, J. (1996). Assessing agreement on classification tasks: the kappa statistic. Comput. Linguist., 22(2), 249-254. Chen, C. (2006). Information Visualization: Beyond the Horizon: Springer-Verlag New York, Inc. Chen, T. T. (2012). The development and empirical study of a literature review aiding system. Scientometrics, 92(1), 105-116. doi: 10.1007/s11192-012-0728-3 Chen, T. T. (2015). The congruity between linkage-based factors and content-based clusters—an experimental study using multiple document corpora. Journal of the Association for Information Science and Technology, n/a-n/a. doi: 10.1002/asi.23413 Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1), 117-143. Culnan, M. J. (1987). Mapping the Intellectual Structure of MIS, 1980-1985: A Co-Citation Analysis. MIS Quarterly, 11(3), 341-353. Dearholt, D. W., & Schvaneveldt, R. W. (1990). Properties of pathfinder networks. In W. S. Roger (Ed.), Pathfinder associative networks (pp. 1-30): Ablex Publishing Corp. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1-38. Ding, Y., Chowdhury, G., & Foo, S. (1999). Mapping the intellectual structure of information retrieval studies: an author co-citation analysis, 1987-1997. Journal of information science, 25(1), 67-78. Dittenbach, M., Merkl, D., & Rauber, A. (2000, 2000). The growing hierarchical self-organizing map. Paper presented at the Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on. Feldman, R., Fresko, M., Kinar, Y., Lindell, Y., Liphstat, O., Rajman, M., . . . Zamir, O. (1998). Text mining at the term level. In J. Żytkow & M. Quafafou (Eds.), Principles of Data Mining and Knowledge Discovery (Vol. 1510, pp. 65-73): Springer Berlin Heidelberg. Futschik, M., & Carlisle, B. (2005). Noise-Robust Soft Clustering of Gene Expression Time-Course Data. Journal of Bioinformatics and Computational Biology, 03(04), 965-988. doi: doi:10.1142/S0219720005001375 Garfield, E. (1955). Citation indexes for science; a new dimension in documentation through association of ideas. Science (New York, N.Y.), 122(3159), 108-111. Garfield, E., Malin, M. V., & Small, H. (1983). Citation data as science indicators. In: Y Elkana (ed.), Toward a Metric of Science. New York: Wiley. Goldsmith, T. E., Johnson, P. J., & Acton, W. H. (1991). Assessing structural knowledge. Journal of educational psychology, 83(1), 88. Gwet, K. (2002). Inter-rater reliability: dependency on trait prevalence and marginal homogeneity. Statistical Methods for Inter-Rater Reliability Assessment Series, 2, 1-9. Härdle, W., & Simar, L. (2007). Applied multivariate statistical analysis (Vol. 22007): Springer. Harman, H. H. (1976). Modern factor analysis: University of Chicago Press. Hendrickson, A. E., & White, P. O. (1964). PROMAX: A QUICK METHOD FOR ROTATION TO OBLIQUE SIMPLE STRUCTURE. British Journal of Statistical Psychology, 17(1), 65-70. Hsiao, C. H., & Yang, C. (2011). The intellectual development of the technology acceptance model: A co-citation analysis. International Journal of Information Management, 31(2), 128-136. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193-218. Jaccard, P. (1901). Distribution de la Flore Alpine: dans le Bassin des dranses et dans quelques régions voisines: Rouge. Jiawei, H., & Kamber, M. (2001). Data mining: concepts and techniques. San Francisco, CA, itd: Morgan Kaufmann, 5. Kaiser, H. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187-200. Kangas, J., & Kohonen, T. (1996). Developments and applications of the self-organizing map and related algorithms. Mathematics and Computers in Simulation, 41(1–2), 3-12. Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59-69. Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1–3), 1-6. Kotsiantis, S., & Pintelas, P. (2004). Recent advances in clustering: A brief survey. WSEAS Transactions on Information Science and Applications, 1(1), 73-81. Macqueen, J. (1967). Some methods for classification and analysis of multivariate observations. Paper presented at the Proc. 5th Berkeley Symp. Mathematical Statist. Probability. McLachlan, G., & Krishnan, T. (1997). The EM Algorighm and Extensions: John Wiley and Sons. Meilă, M., & Heckerman, D. (2001). An Experimental Comparison of Model-Based Clustering Methods. Machine Learning, 42(1-2), 9-29. Moon, T. K. (1996). The expectation-maximization algorithm. Signal Processing Magazine, IEEE, 13(6), 47-60. Moya-Anegón, F., Herrero-Solana, V., & Jiménez-Contreras, E. (2006). A connectionist and multivariate approach to science maps: the SOM, clustering and MDS applied to library and information science research. Journal of information science, 32(1), 63-77. Neuhaus, J. O., & Wrigley, C. (1954). THE QUARTIMAX METHOD. British Journal of Statistical Psychology, 7(2), 81-91. Norris, M., & Lecavalier, L. (2010). Evaluating the Use of Exploratory Factor Analysis in Developmental Disability Psychological Research. Journal of Autism and Developmental Disorders, 40(1), 8-20. doi: 10.1007/s10803-009-0816-2 Park, H. S., Dailey, R., & Lemus, D. (2002). The Use of Exploratory Factor Analysis and Principal Components Analysis in Communication Research. Human Communication Research, 28(4), 562-577. doi: 10.1111/j.1468-2958.2002.tb00824.x Punj, G., & Stewart, D. W. (1983). Cluster Analysis in Marketing Research: Review and Suggestions for Application. Journal of Marketing Research, 20(2), 134-148. Santos, J., & Embrechts, M. (2009). On the Use of the Adjusted Rand Index as a Metric for Evaluating Supervised Classification. In C. Alippi, M. Polycarpou, C. Panayiotou & G. Ellinas (Eds.), Artificial Neural Networks – ICANN 2009 (Vol. 5769, pp. 175-184): Springer Berlin Heidelberg. Saunders, D. R. (1961). The rationale for an “oblimax” method of transformation in factor analysis. Psychometrika, 26(3), 317-324. Sickle, J. V. (1997). Using Mean Similarity Dendrograms to Evaluate Classifications. Journal of Agricultural, Biological, and Environmental Statistics, 2(4), 370-388. Spearman, C. (1904). "General Intelligence," Objectively Determined and Measured. The American Journal of Psychology, 15(2), 201-292. doi: 10.2307/1412107 Torgerson, W. (1952). Multidimensional scaling: I. Theory and method. Psychometrika, 17(4), 401-419. Wongpakaran, N., Wongpakaran, T., Wedding, D., & Gwet, K. L. (2013). A comparison of Cohen’s Kappa and Gwet’s AC1 when calculating inter-rater reliability coefficients: a study conducted with personality disorder samples. BMC medical research methodology, 13(1), 61. Yen, G. G., & Zheng, W. (2006). A Self-Organizing Map Based Approach for Document Clustering and Visualization. Paper presented at the Neural Networks, 2006. IJCNN '06. International Joint Conference on. Yen, G. G., & Zheng, W. (2008). Ranked Centroid Projection: A Data Visualization Approach With Self-Organizing Maps. Neural Networks, IEEE Transactions on, 19(2), 245-259.
|