1.Andreozzi, R., Caprio, V., Insola, A., and Marotta, R., “Advanced oxidation processes (AOPs) for water purification and recovery,” Catalysis Today, Vol. 53, pp. 51(1999).
2.Blake, D. M., Maness, P.C., Huang, Z., Wolfrum, E.J. and Huang, J., “Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells,” Separation and Purification Methods, Vol. 28, pp. 1-50(1990).
3.Bhave, R. C., and Lee, B. I., “Experimental variables in the synthesis of brookite phase TiO2 nanoparticles,” Materials Sicence and Engineering A, Vol. 467,pp. 146-149(2007).
4.Bensalah, N., Quiroz Alfaro, M. A., and Martinez-Huitle, C. A., “Electrochemical treatment of synthetic wastewaters containing Alphazurine A dye,” Chemical Engineering Journal, Vol. 149, pp. 348-352(2009).
5.Chen, J. P., and Lim, L. L., “Recovery of precious metals by an electrochemical deposition method,” Chemosphere, Vol, 60, pp. 1384-1392 (2005).
6.Cho, M., Chung, H., Choi, W., and Yoon, J., “Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection,” Water Research, Vol. 38, pp. 1069-2077 (2004).
7.Chang, C. Y., Hsieh, Y. H., Hsieh, L. L., Yao, K. S., and Cheng, T. C., “Establishment of activity indicator of TiO2 photocatalytic reaction-Hydroxyl radical trapping method,” Journal of Hazardous Materials, Vol. 166, pp. 897-903(2009).
8.Bashaa, C. A., Bhadrinarayanab, N. S., Anantharamanb, N., and Meera Sheriffa Begumb, K. M., “Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor,” Journal of Hazardous Materials, Vol. 152, pp. 71-78(2008).
9.Chen, G., “Electrochemical technologies in wastewater treatment,” Separation and Purification Technology, Vol. 38, pp. 11-41(2004).
10.Cameselle, C. M., and Pazos, M. A., “Selection of an electrolyte to enhance the electrochemical decolourisation of indigo. Optimisation and scale-up,” Chemosphere Vol. 60, pp.1080-1086 (2005).
11.Turroa, E., Giannisb, A., Cossua, R., Gidarakosb, E., Mantzavinosb, D., Katsaounisc, A., “Electrochemical oxidation of stabilized landfill leachate on DSA electrodes,” Journal of Hazardous Materials, Vol. xxx, pp. xxx-xxx (2012).
12.Feng, C., Sugiura, N., Shimada, S., and Maekawa, T., “Development of a high performance electrochemical wastewater treatment system,” Journal of Hazardous Materials, Vol. B103, pp. 65-78 (2003).
13.Güven, G., A. Perendeci, and A. Tanyolac, “Electrochemical treatment of simulated beet sugar factory wastewater,” Chemical Engineering Journal, Vol. 151, pp. 149-159 (2009).
14.Rodrigues de Oliveiraa, G., Suely Fernandesa, N., Vieira de Meloa, J., Ribeiro da Silvaa, D., Urgegheb, C., and Martínez-Huitlea, C. A., “Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters,” Chemical Engineering Journal, Vol. 168, pp. 208-214(2011).
15.Herrmann J. M., “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catalysis Today, Vol. 53, pp. 115-129(1999).
16.Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, Vol. 20,pp. 69-95(1995).
17.Changa, J. H., Yangb, T. J., and Tungc, C. H., “Performance of nano- and nonnano-catalytic electrodes for decontaminating municipal wastewater,” Journal of Hazardous Materials, Vol. 163,pp. 152-157(2009).
18.Karunakarana, C., and Anilkumar, P., “Photooxidation of iodide ion on immobilized semiconductor powders,” Solar Energy Materials and Solar Cells, Vol. 92, pp. 490-494(2008).
19.Karvinen, S., Hirva, P., and Pakkanen, T. A., “Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2,” Journal of Molecular Structure(Theochem), Vol. 626, pp. 271-277(2003)
20.Radha, K. V., Sridevi, V., and Kalaivani, K., “Electrochemical oxidation for the treatment of textile industry wastewater,” Bioresource Technology, Vol. 100, pp. 987-990 (2009).
21.Pillai, K. C., Chung, S. J., and Moon, I. S., “Studies on electrochemical recovery of silver from simulated waste water from Ag(II)/Ag(I) based mediated electrochemical oxidation process,” Chemosphere, Vol. 73, pp. 1505-1511(2008).
22.Lissens, G., Pieters, J., Verhaege, M., Pinoy, L., and Verstraete, W., ”Electrochemical degradation of surfactants by intermediates of water discharge at carbon-based electrodes,” Electrochimica Acta, Vol. 48, pp. 1655-1663 (2003).
23.Szpyrkowicza, L., Kaulb, S. N., Netib, R. N., and Satyanarayanb, S., “Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater,” Water Research, Vol. 39, pp. 1601-1603(2005).
24.Litter, M. I., Ibanze, J. A., and Pizarro, R. A., “Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae comparative study with other Gram( 一 ) bacteria,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 157, pp. 81-85(2003).
25.Linsebigler, A. L., Lu, G., and Yates Jr, J. T., “Photocatalysis on TiO2 surface: principles, mechanism, and selected results,” Chemical Reviews, Vol. 95, pp. 735-758(1995).
26.Li, Y., Wang, F., Zhou, G., and Ni Y., “Aniline degradation by electrocatalytic oxidation,” Chemosphere, Vol. 53, pp. 1229-1234(2003).
27.Li, L., and Goel, R. K., “Role of hydroxyl radical during electrolytic degradation of contaminants,” Journal of Hazardous Materials, Vol. 181, pp. 521-525(2010).
28.Hunsom, M., Pruksathorn, K., Damronglerd, S., Vergnes, H., and Duverneuil, P., “Electrochemical treatment of heavy metals(Cu2+,Cr6+,Ni2+) from industrial effluent and modeling of copper reduction,” Water Research, Vol. 39, pp. 610-616(2005).
29.Monk, P., “Fundamentals of Electroanalytical Chemistry,” John Wiley& Sons, New York(2001).
30.Panizza, M., and Cerisola, G., “Olive mill wastewater treatment by anodic oxidation with parallel plate electrodes,” WATER RESEARCH, Vol. 40, pp. 1179-1184 (2006).
31.Nargiello, M., and Herz, T., “Physical-chemiscal characteristics of P-25 making it exteremely suited as the catalyst in photodegradation of organic compounds,” in Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F., Al-Ekabi, H., Eds., Elsevier: Amsterdam, pp. 801-807、820(1993).
32.Oturan, M. A., “An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D,” Journal of Applied Electrochemistry, Vol. 30, pp. 475-482 (2000).
33.Panizza, M., Bocca, C., and Cerisola, G., “Electrochemical treatment of wastewater containing polyaromatic organic pollutants,” Water Research, Vol. 34, pp. 2601-2605(2000).
34.Parsons, S., “Advanced oxidation processes for water and wastewater treatment,” IWA Publishing, UK, pp. 4(2004).
35.Sanroma’n, M. A., Pazos, M., Ricart, M. T., and Cameselle, C., “Electrochemical decolourisation of structurally different dyes,” Chemosphere, Vol.57, pp.233-239 (2004).
36.Chellammal, S., Raghu, S., Kalaiselvi, P., and Subramanian, G., “Electrolytic recovery of dilute copper from a mixed industrial effluent of high strength COD,” Journal of Hazardous Materials, Vol. 180, pp. 91-97(2010).
37.Scott, K., “Metal recovery using a moving-bed electrode,” Journal of Applied Electrochemistry, Vol. 11, pp.339-346(1981).
38.Hammamia, S., Bellakhal, N., Oturan, N., Oturan, M. A., and Dachraoui, M., ” Degradation of Acid Orange 7 by electrochemically generated ‧OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode: A mechanistic study” Chemosphere, Vol. 73, pp.678-684(2008).
39.William, D., and Callister, Jr., Materials Science and Engineering an Introduction, John Wiley and Sons, Inc. 6th edition, Hoboken(2003).
40.Xu, X. W., H. X. Shi., and D. H. Wang., “Ozonation with Ultrasonic Enhancement of p-nitrophenol Wastewater,” Journal of Zhejiang University SCIENCE, Vol. 6B, pp.319-323(2005).
41.Deng, Y., Englehardt, J. D., “Electrochemical oxidation for landfill leachate treatment,” Waste Management, Vol. 27, pp. 380-388 (2007).
42.Oztekin, Y., Yazicigil, Z., “Recovery of metals from complexed solutions by Electrodeposition,” Desalination, Vol. 190, pp. 79-88 (2006).
1.唐政宏, “探討二氧化鈦觸媒電極氫氧自由基產率及處理生活污水效率” ,碩士學位論文,朝陽科技大學環境工程與管理研究所,台中市( 2007 )。2.周志豪, “利用超音波與電化學法處理螯合性含銅廢水” ,碩士學位論文,朝陽科技大學環境工程與管理研究所,台中市( 2005 )。3.許家綺, “探討光電觸媒之氫氧自由基檢測方法及其產率” ,碩士學位論文,朝陽科技大學環境工程與管理研究所,台中市( 2011 )。4.洪志毅, “製備不同奈米粒徑TiO2極板及比較其處理甲基橙廢水之光觸媒效率” ,碩士學位論文,朝陽科技大學環境工程與管理研究所,台中市( 2010 )。5.黃文圻, “探討水中銅離子在陽離子交換膜的電對流傳輸特性及應用” ,碩士學位論文,朝陽科技大學環境工程與管理研究所,台中市( 2010 )。6.張弘民, “二氧化銥一維奈米晶體的成長與特性分析” ,碩士學位論文,國立台灣科技大學材料科技研究所,台北市( 2005 )。7.黃進緯, “利用前驅物Ir(C8H12)(C5H7O2)以有機金屬化學氣相沉積法成長二氧化銥一維奈米結構及其成長分析” ,碩士學位論文,國立台灣科技大學材料科技研究所,台北市( 2006 )。8.戴祺緯, “以不同有機金屬前驅物 (C6H7) (C8H12) Ir 及(C5H7O2) (C8H12) Ir成長二氧化銥一維奈米晶體之研究” ,碩士學位論文,國立台灣科技大學材料科技研究所,台北市( 2007 )。9.李正裕, “太陽能電池電極網印製程之研究” ,碩士學位論文,國立台灣科技大學機械工程系,台北市( 2008 )。10.黃瑞雄,顏溪成, “漫談電化學” ,科學發展,台灣大學化工系,台北市( 2002 )。11.田福助, “電化學-理論與應用” ,高立圖書有限公司,台北縣( 2006 ) 。