1.楊斌,PLA聚乳酸環保塑膠,五南圖書出版股份有限公司,2010年。
2.Spence, Kelley Lynn, Processing and Properties of Microfibrillated Cellulose, North Carolina State University; 2011.
3.日本生物可分解塑膠研究會,圖解生物可分解塑膠,世貿出版有限公司,2006年。
4.王國雄,聚乳酸的發展與市場應用,尖端材料科技協會季刊,2012年。
5.蘇明德,能自動分解的塑膠—可降解塑膠,科技發展,2010年。
6.三迪時空,http://www.3dfocus.com.cn/news/show-344.html
7.L.-T. Lim, R. Auras, M. Rubino, Processing technologies for poly(lactic acid), Progress in Polymer Science, 33, 820-52 (2008).
8.O. Faruk, A. K. Bledzki, H.-P. Fink, M. Sain, Biocomposites reinforced with natural fibers: 2000-2010, Progress in Polymer Science, 37, 1552-96 (2012).
9.A. Samir, F. Alloin, and A. Dufresne, Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field, Biomacromolecules, 6, 612-26 (2005).
10.T.W. Frederick, W. Norman, Natural fibers plastics and composites. Kluwer Academic Publishers, New York; 2004.
11.嘉義農業試驗分所,http://www.caes.gov.tw
12.王紅、邢聲遠,菠蘿葉纖維的開發及應用,紡織學報,第三卷,52-4 (2010)。
13.林忠誠,微米化纖維纖維素(MFC)於熱塑性複合材料的應用,工業材料雜誌,2011年。14.N. Lavoine, I. Desloges, A. Dufresne, J. Bras, Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review, Carbohydrate Polymers, 90, 735-64 (2012).
15.E Brännvall, Aspect on Strength Delivery and Higher Utilisation of Strength Potential of Soft Wood Kraft Pulp Fibres. Royal Institute of Technology: Stockholm, Sweden; 2007.
16.M.J. John, S. Thomas, Biofibres and biocomposites, Carbohydrate Polymers, 71, 343-64 (2008).
17.J. Lu, P. Askeland, and L. T. Drzal, Surface modification of microfibrillated cellulose for epoxy composite applications, Polymer, 49, 1285-96 (2008).
18.F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: Morphology and accessibility, in Presented at the Conference: 9. Cellulose conference, Syracuse, NY, USA, 37, 797-813 (1983).
19.A. F. Turbak, F. W. Snyder, and K. R. Sandberg, Micro-fibrillated cellulose and process for producing it, Patent n◦ CH 648071 (A5) (1985).
20.M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Aloha, M. Osterberg et al., Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, Biomacromolecules, 8, 1934-41 (2007).
21.E.V. Gert, V.I. Torgashov, O.V. Zubets, and F.N. Kaputskii, Preparation and properties of enterosorbents based on carboxylated microcrystalline cellulose, Cellulose, 12, 517-26 (2005).
22.T. Kitaoka, A. Isogai, and F. Onabe, Chemical modification of pulp fibers by TEMPO-mediated oxidation, Nordic Pulp & Paper Research Journal, 14, 279-84 (1999).
23.S. Montanari, M. Roumani, L. Heux, and M. R. Vignon, Topochemistry of Carboxylated Cellulose Nanocrystals Resulting from TEMPO-Mediated Oxidation, Macromolecules, 38, 1665-71 (2005).
24.T. Saito and A. Isogai, TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions, Biomacromolecules, 5, 1983-9 (2004).
25.T. Saito, Y. Nishiyama, J.-L. Putaux, M. Vignon, and A. Isogai, Homogeneous Suspensions of Individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose, Biomacromolecules, 7, 1687-91 (2006).
26.T. Saito, Y. Okita, T. T. Nge, J. Sugiyama, and A. Isogai, TEMPO-mediated oxidation of native cellulose: Microscopic analysis of fibrous fractions in the oxidized products. Carbohydrate Polymers, 65, 435-40 (2006).
27.T. Saigo and A. Isogai, Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation, Colloids and Surfaces A, 289, 219-25 (2006).
28.M. Hirota, N. Tamura, T. Saito, and A. Isogai, Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8, Cellulose, 17, 279-88 (2009).
29.T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, et al., Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions, Biomacromolecules, 10, 1992-6 (2009).
30.A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, 3, 71 (2011).
31.T. Isogai, T. Saito, and A. Isogai, Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation, Cellulose, 18, 421-31 (2011).
32.C. Aulin, S. Aloha, P. Josefsson, T. Nishino, Y. Hirose, M. Österberg, et al., Nanoscale cellulose films with different crystallinities and mesostructures—Their surface properties and interaction with water, Langmuir, 25, 7675-85 (2009).
33.T. Taipale, M. Österberg, A. Nykänen, J. Ruokolainen, and J. Laine, Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength, Cellulose, 17, 1005-20 (2010).
34.A. N. Nakagaito and H. Yano, The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Applied Physics A, 78, 547-52 (2004).
35.S. Iwamoto, A. N. Nakagaito, and H. Yano, Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites, Applied Physics A, 89, 461–6 (2007).
36.A. Dufresne, J.-Y. Cavaille, and M. R. Vignon, Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils, Journal of Applied Polymer Science, 64, 1185–94 (1997).
37.A. Bhatnagar, and M. Sain, Processing of cellulose nanofiber-reinforced composites, Journal of Reinforced Plastics and Composites, 24, 1259–68 (2005).
38.B. Wang, and M. Sain, Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers, Composites Science and Technology, 67, 2521–7 (2007).
39.P. Tingaut, T. Zimmermann, and F. Lopez-Suevos, Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose, Biomacromolecules, 11, 454-64 (2009).
40.G. Rodionova, M. Lenes, Ø. Eriksen, and Ø. Gregersen, Surface chemical modification of microfibrillated cellulose: Improvement of barrier properties for packaging applications, Celullose, 18, 127-34 (2010).
41.P. Stenstad, M. Andresen, B. S. Tanem, and P. Stenius, Chemical surface modifications of microfibrillated cellulose, Cellulose, 15, 35–45 (2007).
42.吳人潔,複合材料,新文京開發出版股份有限公司,2004年。
43.Jianye Wen and Garth L. Wilkes, Organic/Inorganic Hybric Network Materials by the Sol-Gel Approach, Chem. Mater., 8, 1667-81 (1996).
44.黃仁宏,溶膠-凝膠法改質植物纖維/聚乳酸複合材料之製備及其特性分析,碩士論文,朝陽科技大學應用化學系,2013年。45.R. K. Iler, The Chemistry of Silica, John Wiley & Sons, 1979.
46.C. Jeffrey Brinker, George W. Scherer, Sol-gel science : the physics and chemistry of sol-gel processing, Academic Press, Inc.; 1990.
47.W. Sujaritjun, P. Uawongsuwan, W. Pivsa-Art, H. Hamada, Mechanical property of surface modified natural fiber reinforced PLA biocomposites, Energy Procedia, 34, 664-72 (2013).
48.Y.-F. Shih, W.-C. Chang, W.-C. Liu, C.-C. Lee, C.-S. Kuan, Y.-H. Yu, Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites, Journal of the Taiwan Institute of Chemical Engineers, 45, 2039-46 (2014).
49.A. Iwatake, M. Nogi, H. Yano, Cellulose nanofiber-reinforced polylactic acid, Composites Science and Technology, 68, 2103-6 (2008).
50.L. Suryanegara, A. N. Nakagaito, H. Yano, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, Composites Science and Technology, 69, 1187-92 (2009).
51.S. Sequeira, D. V. Evtuguin, I. Portugal, A. P. Esculcas, Synthesis and characterization of cellulose/silica hybrids obtained by heteropoly acid catalyzed sol-gel process, Materials Science and Engineering C, 27, 172-9 (2007).
52.A. Ashori, S. Sheykhnazari, T. Tabarsa, A. Shakeri, M. Golalipour, Bacterial cellulose/silica nanocomposites : Preparation and characterization, Carbohydrate Polymers, 90, 413-8 (2012)
53.吳寶芬,鳳梨產業現況及展望,101年度行政院農委會農民學院鳳梨栽培管理訓練班講義。
54.E. Espino-Pérez, S. Domenek, N. Belgacem, C. Sillard, and J. Bras, Green Process for Chemical Functionalization of Nanocellulose with Carboxylic Acids, Biomacromolecules, 15, 4551-60 (2014).
55.L.A. Colnago, M. Martins, L. Forato, L. Mattoso, A solid state 13C high resolution NMR study of raw and chemically treated sisal fibers, Carbohydrate Polymers, 64, 127-33 (2006).
56.F. Uhlig, H. C. Marsmann, 29Si NMR Some Pratical Aspects, Gelest, Inc.
57.Y. Habibi and A. Dufresne, Highly Filled Bionanocomposites from Functionalized Polysaccharide Nanoctystals, Biomacromolecules, 9, 1974-80 (2008).
58.H. Almasi, B. Ghanbarzadeh, J. Dehghannya, A. A. Entezami, A. K. Asl, Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactid acid): Morphological and physical properties, Food Packaging and Shelf Life, 5, 21-31 (2015).
59.M. R. Badrossamy and G. Sun, A Study on Melt Grafting of N-Halamine Moieties onto Polyethylene and Their Antibacterial Activities, Macromolecules, 42, 1948-54 (2009).