|
1. Wang, Y.Y., et al., Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg Med Chem, 2002. 10(4): p. 1057-62. 2. Lin, Z.B., Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J Pharmacol Sci, 2005. 99(2): p. 144-53. 3. Paterson, R.R., Ganoderma - a therapeutic fungal biofactory. Phytochemistry, 2006. 67(18): p. 1985-2001. 4. Chen, H.S., et al., Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides. Bioorg Med Chem, 2004. 12(21): p. 5595-601. 5. Hsu, H.Y., et al., Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways. J Immunol, 2004. 173(10): p. 5989-99. 6. Hua, K.F., et al., Ganoderma lucidum polysaccharides enhance CD14 endocytosis of LPS and promote TLR4 signal transduction of cytokine expression. J Cell Physiol, 2007. 212(2): p. 537-50. 7. Liao, S.F., et al., Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes. Proc Natl Acad Sci U S A, 2013. 110(34): p. 13809-14. 8. van der Hem, L.G., et al., Ling-Zhi-8: a fungal protein with immunomodulatory effects. Transplant Proc, 1996. 28(2): p. 958-9. 9. Wu, C.T., et al., Ling Zhi-8 mediates p53-dependent growth arrest of lung cancer cells proliferation via the ribosomal protein S7-MDM2-p53 pathway. Carcinogenesis, 2011. 32(12): p. 1890-6. 10. Hsu, H.Y., et al., Reishi protein LZ-8 induces FOXP3(+) Treg expansion via a CD45-dependent signaling pathway and alleviates acute intestinal inflammation in mice. Evid Based Complement Alternat Med, 2013. 2013: p. 513542. 11. Kino, K., et al., Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. J Biol Chem, 1989. 264(1): p. 472-8. 12. Huang, L., et al., Crystal structure of LZ-8 from the medicinal fungus Ganoderma lucidium. Proteins, 2009. 75(2): p. 524-7. 13. Miyasaka, N., et al., An immunomodulatory protein, Ling Zhi-8, facilitates cellular interaction through modulation of adhesion molecules. Biochem Biophys Res Commun, 1992. 186(1): p. 385-90. 14. Haak-Frendscho, M., et al., Ling Zhi-8: a novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell Immunol, 1993. 150(1): p. 101-13. 15. Hsu, H.Y., et al., Reishi immuno-modulation protein induces interleukin-2 expression via protein kinase-dependent signaling pathways within human T cells. J Cell Physiol, 2008. 215(1): p. 15-26. 16. Hsien-Yeh Hsu, T.-Y.L., Ruey-Shyang Hseu, and Ching-Tsan Huang, Ling Zhi Immuno-Modulation Protein, LZ-8 Induction of Interleukin-1 Expression in Human Monocytes via Pertussis Toxin-Sensitive G Protein-Mediated Protein Kinase Pathway. Adaptive Medicine, 2014. 6(2): p. 63-72. 17. van der Hem, L.G., et al., Ling Zhi-8: studies of a new immunomodulating agent. Transplantation, 1995. 60(5): p. 438-43. 18. Chu, C.L., C. Chen Dz, and C.C. Lin, A novel adjuvant Ling Zhi-8 for cancer DNA vaccines. Hum Vaccin, 2011. 7(11): p. 1161-4. 19. Lin, C.C., et al., A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer Immunol Immunother, 2011. 60(7): p. 1019-27. 20. Lin, H.J., et al., An Immunomodulatory Protein (Ling Zhi-8) from a Ganoderma lucidum Induced Acceleration of Wound Healing in Rat Liver Tissues after Monopolar Electrosurgery. Evid Based Complement Alternat Med, 2014. 2014: p. 916531. 21. MB, S., - The war on cancer. Lancet, 1996. 347(9012): p. 1377-81. 22. Sharma, S.V., et al., Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer, 2007. 7(3): p. 169-81. 23. Denlinger, C.E., et al., Epithelial to mesenchymal transition: The doorway to metastasis in human lung cancers. J Thorac Cardiovasc Surg, 2010. 140(3): p. 505-513. 24. Paez, J.G., et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004. 304(5676): p. 1497-500. 25. Thiery, J.P., et al., Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 2009. 139(5): p. 871-890. 26. Thiery, J.P. and J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 2006. 7(2): p. 131-42. 27. Shook, D. and R. Keller, Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev, 2003. 120(11): p. 1351-83. 28. Condeelis, J. and J.W. Pollard, Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 2006. 124(2): p. 263-6. 29. Batlle, E., et al., The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol, 2000. 2(2): p. 84-9. 30. Cano, A., et al., The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000. 2(2): p. 76-83. 31. Casas, E., et al., Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res, 2011. 71(1): p. 245-54. 32. Zhang, A., et al., Antisense-Snail transfer inhibits tumor metastasis by inducing E-cadherin expression. Anticancer Res, 2008. 28(2A): p. 621-8. 33. Hung, J.J., et al., Prognostic significance of hypoxia-inducible factor-1alpha, TWIST1 and Snail expression in resectable non-small cell lung cancer. Thorax, 2009. 64(12): p. 1082-9. 34. Shih, J.Y., et al., Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res, 2005. 11(22): p. 8070-8. 35. Lee, M.-Y., et al., Epithelial-Mesenchymal Transition in Cervical Cancer: Correlation with Tumor Progression, Epidermal Growth Factor Receptor Overexpression, and Snail Up-Regulation. Clinical Cancer Research, 2008. 14(15): p. 4743-4750. 36. Zhou, B.P., et al., Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol, 2004. 6(10): p. 931-40. 37. Wang, S.P., et al., p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol, 2009. 11(6): p. 694-704. 38. Kim, J., et al., Cooperative actions of p21WAF1 and p53 induce Slug protein degradation and suppress cell invasion. EMBO Rep, 2014. 15(10): p. 1062-8. 39. Lemmon, M.A. and J. Schlessinger, Cell signaling by receptor tyrosine kinases. Cell, 2010. 141(7): p. 1117-34. 40. Gan, Y., et al., Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene, 2010. 29(35): p. 4947-58. 41. Nyati, M.K., et al., Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer, 2006. 6(11): p. 876-85. 42. McLean, G.W., et al., The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat Rev Cancer, 2005. 5(7): p. 505-15. 43. Sulzmaier, F.J., C. Jean, and D.D. Schlaepfer, FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer, 2014. 14(9): p. 598-610. 44. Carelli, S., et al., Up-regulation of focal adhesion kinase in non-small cell lung cancer. Lung Cancer, 2006. 53(3): p. 263-71. 45. Sieg, D.J., et al., FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol, 2000. 2(5): p. 249-56. 46. Imaizumi, M., et al., Role of tyrosine specific phosphorylation of cellular proteins, especially EGF receptor and p125FAK in human lung cancer cells. Lung Cancer, 1997. 17(1): p. 69-84. 47. Schlaepfer, D.D., et al., Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 1994. 372(6508): p. 786-91. 48. Zhao, J. and J.L. Guan, Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev, 2009. 28(1-2): p. 35-49. 49. Schlaepfer, D.D. and T. Hunter, Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol, 1996. 16(10): p. 5623-33. 50. Westhoff, M.A., et al., SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol Cell Biol, 2004. 24(18): p. 8113-33. 51. Schlaepfer, D.D., C.R. Hauck, and D.J. Sieg, Signaling through focal adhesion kinase. Prog Biophys Mol Biol, 1999. 71(3-4): p. 435-78. 52. Bolos, V., et al., The dual kinase complex FAK-Src as a promising therapeutic target
|