|
中文文獻 [1]楊台寧、謝秉訓,民101,『電子口碑、品牌形象、品牌忠誠度與消費者購買意願關係之研究』,第15屆科技整合管理研討會,第1~15頁。 [2]李唯菁,民101,探索電子口碑對購買意圖影響之研究,國立台北科技大學資訊與運籌管理研究所。 [3]蕭涵中,民102,電子口碑訊息來源可信度與產品涉入程度對旅遊產品購買意圖影響之研究,中國文化大學商學院觀光產業學系。 英文文獻 [4]Bao, T., and Chang, T. L. S., 2014. “Finding disseminators via electronic word of mouth message for effective marketing communications,” Decision Support Systems, 67, pp.21-29. [5]Cheung, C.M.L., Lee, M.K.O., and Thadani, D.R., 2008. “The impact of electronic word-of-mouth: The adoption of online opinions in online customer communities,” Internet Research18(3), pp.229-247. [6]Chandra, B., Paul Varghese, P., 2009. “Moving towards efficient decision tree construction,” Information Sciences (179), pp.1059–1069. [7]Chen Y. L., Hung L. T., 2009, “Using decision trees to summarize associative classification rules,” Expert Systems with Applications (36), pp. 2338–2351. [8]Chen L. S., Liu C.H., Chiu H. J., 2011, “A neural network based approach for sentiment classification in the blogosphere,” Journal of Informetrics (5), pp. 313–322. [9]Christy M.K. Cheung, Matthew K.O. Lee, 2012. “What drives consumers to spread electronic word of mouth in online consumer-opinion platforms,” Decision Support Systems (53), pp.218-225. [10]Cateni, S., Colla, V., and Vannucci, M. 2014. “A method for resampling imbalanced datasets in binary classification tasks for real-world problems,” Neurocomputing, 135, pp.32-41. [11]Chang, H. H., & Wu, L. H., 2014. An examination of negative e-WOM adoption: Brand commitment as a moderator. Decision Support Systems, 59, pp.206-218. [12]Eric W.K. See-To, Kevin K.W. Ho, 2014. “Value co-creation and purchase intention in social network sites: The role of electronic Word-of-Mouth and trust-A theoretical analysis,” Computers in Human Behavior (31), pp.182-189. [13]Fu, J., & Lee, S., 2013. “Certainty-based active learning for sampling imbalanced datasets,” Neurocomputing, 119, pp.350-358. [14]Floyd, K., Freling, R., Alhoqail, S., Cho, H. Y., and Freling, T., 2014. “How Online Product Reviews Affect Retail Sales: A Meta-analysis,” Journal of Retailing(90), pp.217-232. [15]Farid, D. M., Zhang, L., Rahman, C. M., Hossain, M. A., and Strachan, R., 2014. “Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks,” Expert Systems with Applications, 41(4), pp.1937-1946. [16]Farquad, M. A. H., Ravi, V., and Raju, S. B., 2014. “Churn prediction using comprehensible support vector machine: An analytical CRM application,” Applied Soft Computing, 19, pp.31-40. [17]García, V., Sánchez, J. S., and Mollineda, R. A. 2011. “On the effectiveness of preprocessing methods when dealing with different levels of class imbalance,” Knowledge-Based Systems, vol. 25, no. 1, pp. 13-21. [18]Gupta, P., and Harris, J., 2010. “How e-WOM recommendations influence product consideration and quality of choice: a motivation to process information perspective,” Journal of Business Research, 63(9), 1041-1049. [19]Hao, M., Wang, Y., & Bryant, S. H., 2014. “An efficient algorithm coupled with synthetic minority over-sampling technique to classify imbalanced PubChem BioAssay data,” Analytica chimica acta, 806, pp.117-127. [20]Hogenboom, A., Heerschop, B., Frasincar, F., Kaymak, U., & de Jong, F., 2014. “Multi-lingual support for lexicon-based sentiment analysis guided by semantics,” Decision Support Systems, 62, pp.43-53. [21]Ilyoo B. Hong, Hoon S. ChaCollege, 2013. “The mediating role of consumer trust in an online merchant inpredicting purchase intention,” International Journal of Information Management (33), pp.927– 939. [22]Kuo R.J., Shieh M.C., Zhang J.W., Chen K.Y., 2013, “The application of an artificial immune system-based back-propagation neural network with feature selection to an RFID positioning system,” Robotics and Computer-Integrated Manufacturing(29), pp.431–438 [23]Krawczyk, B., Wozniak, M., and Schaefer, G., 2014. “Cost-sensitive decision tree ensembles for effective imbalanced classification,” Applied Soft Computing, 14, pp.554-562. [24]Kang, S., and Cho, S., 2014. “Approximating support vector machine with artificial neural network for fast prediction,” Expert Systems with Applications, 41(10), pp.4989-4995. [25]Li, S., Zhou, G., Wang, Z., Lee, S. Y. M., and R. Wang, 2011. “Imbalanced sentiment classification,” Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp.2469-2472. [26]Liu, Y., Yu X., Huang, J. X., An A. 2011. “Combining integrated sampling with SVM ensembles for learning from imbalanced datasets,” Information Processing and Management(47), pp.617-631. [27]Li, Z., Yang, X., Gu, W., Zhang, H., 2013, “Kernel-improved Support Vector Machine for semanteme data,” Applied Mathematics and Computation (219), pp.8876–8880. [28]Lopez, F. M., Puertas, S. M., and Arriaza, J. T. 2014. Training of support vector machine with the use of multivariate normalization. Applied Soft Computing, 24, 1105-1111. [29]Liao, J. J., Shih, C. H., Chen, T. F., and Hsu, M. F., 2014. “An ensemble-based model for two-class imbalanced financial problem,” Economic Modelling, 37, pp.175-183. [30]Lam, H. K., Ekong, U., Liu, H., Xiao, B., Araujo, H., Ling, S. H., and Chan, K. Y., 2014. “A Study of Neural-Network-Based Classifiers for Material Classification,” Neurocomputing. [31]Moraes R., Valiati J. F., Wilson P., Neto, G. 2013. “Docnment-level sentiment classification: An empirical comparison between SVM and ANN,” Expert Systems with Applications(40), pp.621–633. [32]Meng, J., Lin, H., and Yu, Y. (2011), “A two-stage feature selection method for text categorization,” Computers and Mathematics with Applications, vol. 62, no. 7, pp. 2793-2800. [33]Mohd Nawi, N., Atomia, W. H., and Rehman, M. Z. (2013). “The effect of data pre-processing on optimized training of artificial neural networks,” Procedia Technology (11), pp.32 –39. [34]Orriols-Puig, A., and Bernadó-Mansilla, E., 2009. “Evolutionary rule-based systems for imbalanced data sets,” Soft Computing, 13(3), pp.213-225. [35]Polat, K., and Güneş, S., 2009. “A novel hybrid intelligent method based on C4. 5 decision tree classifier and one-against-all approach for multi-class classification problems,” Expert Systems with Applications, 36(2), pp.1587-1592. [36]Pai, M. Y., Chu, H. C., Wang, S. C., & Chen, Y. M., 2013. “Electronic word of mouth analysis for service experience,” Expert Systems with Applications,40(6), pp.1993-2006. [37]Qian, Y., Liang, Y., Li, M., Feng, G., and Shi, X., 2014. “A resampling ensemble algorithm for classification of imbalance problems,” Neurocomputing, 143, pp.57-67. [38]Rodrigo M., Valiati J. F., Wilson P. G. N., 2013, “Document-level sentiment classification: An empirical comparison between SVM and ANN,” Expert Systems with Applications (40), pp. 621–633. [39]Rutkowski, L., Jaworski, M., Pietruczuk, L., and Duda, P., 2014. “The CART decision tree for mining data streams,” Information Sciences, 266, pp.1-15. [40]Rumelhart, D.E., McClelland, J.L., and the PDP Research Group,1986.PARALLEL DISTRIBUTED PROCESSING, Vol. 1, MIT Press, Cambridge,MA. [41]Ramedani, Z., Omid, M., Keyhani, A., Shamshirband, S., and Khoshnevisan, B., 2014. “Potential of radial basis function based support vector regression for global solar radiation prediction,” Renewable and Sustainable Energy Reviews,39, pp.1005-1011. [42]Sun, A., Lim E.P., Liu Y. 2009. "On strategies for imbalanced text classification using SVM: A comparative study," Decision Support Systems 48 pp.191-201. [43]Tong, L. I., Chang, Y. C., and Lin, S. H., 2011, “Determining the optimal re-sampling strategy for a classification model with imbalanced data using design of experiments and response surface methodologies,” Expert Systems with Applications, vol. 38, no. 4, pp. 4222-4227. [44]Verhagen, T., Nauta A., Feldberg F. 2013. “Negative online word-of-mouth:Behavioral indicator or emotional release?,” Computers in Human Behavior 29, pp.1430–1440. [45]Vapnik, V. N. 1995. “The Nature of Statistical Learning Theory,” Springer-Verla. [46]Verhagen, T., Nauta, A., and Feldberg, F., 2013. “Negative online word-of-mouth: Behavioral indicator or emotional release?,” Computers in Human Behavior, 29(4), pp.1430-1440. [47]Wang, R., Kwong, S., Chen, D., “Inconsistency-based active learning for support vector machines,” 2012, Pattern Recognition (45), pp.3751–3767. [48]Wu, Q., Ye, Y., Zhang, H., Ng, M. K., and Ho, S. S., 2014. “ForesTexter: An efficient random forest algorithm for imbalanced text categorization,” Knowledge-Based Systems, 67, pp.105-116. [49]Yu H., Ni j., Zhao J., 2013. ” ACOSampling: An ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data,” Neurocomputing (101), pp.309–318. [50]Yang J., Liu Y., Zhu X., Liu Z., Zhang X. 2012. “A new feature selection based on comprehensive measurement both in inter-category and intra-category for text categorization,” Information Processing and Management (48), pp.741–754. [51]Yoo, C. W., Sanders, G. L., & Moon, J., 2013. “Exploring the effect of e-WOM participation on e-Loyalty in e-commerce,” Decision Support Systems, 55(3), pp.669-678. [52]Yin, L., Ge, Y., Xiao, K., Wang, X., and Quan, X., 2013. “Feature selection for high-dimensional imbalanced data,” Neurocomputing, 105, pp.3-11. [53]Zhang, H., and Li, M., 2014. “RWO-Sampling: A random walk over-sampling approach to imbalanced data classification. Information Fusion,” 20, pp.99-116. [54]Zhao, Z., Zhong, P., and Zhao, Y. (2011). Learning SVM with weighted maximum margin criterion for classification of imbalanced data. Mathematical and Computer Modelling, 54(3), pp.1093-1099. [55]Zhang, H., and Li, M., 2014. “RWO-Sampling: A random walk over-sampling approach to imbalanced data classification,” Information Fusion, 20, pp.99-116
|