1.林孟迪(2000),極端風險值理論在新興市場之應用,淡江大學財務金融研究所碩士論文。2.周政義(2006),RAROC、VaR及極值理論應用於金融控制公司績效評估,中山大學財務管理研究所碩士論文。3.陳建銘(2003),厚尾分配、極值理論與最適資產配置,東吳大學經濟學研究所碩士論文。4.莊益源、林文昌、徐嘉彬、邱臙珍(2003),靜態與動態風險值模型績效之比較,證券市場發展季刊,第15卷,第4期,107-159頁。5.黃向義(2002),極值理論應用於風險值估計之研究,台北大學統計研究所碩士論文。6.彭聖峰(2001),極值理論在風險值之應用與方法比較,中正大學財務金融研究所碩士論文。7.楊佩珍(2002),運用極值理論評估風險值-以台灣股匯市為例,中央大學財務金融研究所碩士論文。8.葉建忠(2006),應用迴歸分析於極值損失平均餘額函數之建模,逢甲大學統計與精算研究所碩士論文。9.鄭茗聰(2004),大宗穀物期貨投資組合風險值研究-超越門檻值法之應用,屏東科技大學農企業管理研究所碩士論文。10.魏輝娥(2003),最適尾端參數估計之探討:台灣股票報酬風險值之應用,中正大學國際經濟研究所碩士論文。11.Bali, T. G. (2003), “An Extreme Value Approach to Estimating Volatility and Value at Risk”, The Journal of Business, Vol.76, pp.83-108.
12.Balkema, A. and L. de Hann (1974), “Residual Life Time at Great Age”, The Annals of Probability, Vol. 2, pp.792-804.
13.Bensalah, Y. (2002), “Asset Allocation Using Extreme Value Theory”, Bank of Canada, Working Paper.
14.Berkowitz, J. and O’Brien, J. (2002), “How Accurate Are Value at Risk Model at Commercial Banks ?”, Journal of Finance, Vol.57,pp.1092-1111.
15.Bollerslev, T. (1987), “A Conditional Heteroskedastic Time Series Model for Speculative Prices and Rate of Return”, Review of Economics and Statistics, Vol.52, pp.5-59.
16.Brooks, C., Clare, A.D., Dalle Molle, J.W., and Persand, G. (2005), “A Comparison of Extreme Value Theory Approaches for Determining Value at Risk”, Journal of Empirical Finance, Vol.12, pp.339-352.
17.Burridge, L. C. (2000), “Value at Risk: Applying the Extreme Value Approach to Asian Markets in the Recent Financial Turmoil”, Pacific Basin Finance Journal, Vol.8, pp.249-275.
18.Coles, S. (1999), “Extreme Value Theory and Applications”, Preprint.
19.Danielsson, J. and C.G. de Vries (1997a), “Tail Index and Quantile Estimation with Very High Frequency Data”, Journal of Empirical Finance, Vol. 4, pp.241-257.
20.Danielsson, J. and C.G. de Vries (2000), “Value at Risk and Extreme Returns”, London School of Economics, Financial Markets Group Discussion Paper, No. 273, pp.1-33.
21.Dupuis, D. (1996), “Estimating the Probability of Obtaining Non-feasible Parameter Estimates of the Generalized Pareto Distribution”, Journal of Statistics Computation and Simulation, Vol.54, pp.197-209.
22.Eric Zivot and Jiahui Wang (2003), “Modeling Financial Time Series with S-Plus”, Springer Verlag.
23.Embrechts, P., Klüppelberg, C., and Mikosch, C. (1997), “Modeling Extremal Events for Insurance and Finance”, Springer, Berlin.
24.Fisher, R. and Tippet, L. (1928), “Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample”, Proceeding of the Cambridge Philosophical Society, Vol. 24, pp.180-190.
25.Fernandez, V. (2005), “Risk Management under Extreme Events”, International Review of Financial Analysis, Vol.14, pp.113-148.
26.Gençay, R. and Selçuk, F. (2004), “Extreme Value Theory and Value at Risk: Relative Performance in Emerging Markets”, International Journal of Forecasting, Vol. 20, pp.287-303.
27.Gnedenko, B. (1943), “Sur La Distribution Limit du terme Maximum d’une série aléatorie”, Annals of Mathematics, Vol. 24, pp.423-453.
28.Gilli, M. and Këllezi, E. (2006), “An Application of Extreme Value Theory for Measuring Financial Risk”, Computational Economics, Vol. 27, pp.1-23.
29.Gumbel, E. (1958), “Statistics of Extremes”, Columbia University Press, New York.
30.Hendricks, D. (1996), “Evaluation of Value at Risk Models Using Historical Data”, Federal Reserve Bank of Now York, Economic Policy Review, Vol. 2, pp.36-69.
31.Hill, B. M. (1975), “A Simple General Approach to Inference about the Tail of a Distribution”, The Annals of Statistics, Vol. 3, pp.1163-1174.
32.Hull, J. and White, A. (1998), “Value at Risk when Daily Changes in Market Variables are not Normally Distributed”, Journal of Derivates, Vol.5, pp.9-19.
33.Jorion, P. (2007), Value at Risk: The New Benchmark for Managing Financial Risk, 3rd edition, McGraw-Hill, New York.
34.Lintner, J. (1965), “The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets”, Review of Economics and Statistics, Vol.47, pp.13-37.
35.Longin F. (2000), “From Value at Risk to Stress Testing: The Extreme Value Approach”, Journal of Banking & Finance, Vol.24, pp.1097-1130.
36.Markowitz, H. (1952), “Portfolio Selection”, Journal of Finance, Vol. 7, pp.77-91.
37.McNeil, Alexander J. (1999), “Extreme Value Theory for Risk Managers”, Internal Modeling and CAD II, Risk Books, pp.93-113.
38.McNeil, Alexander J. and Frey R. (2000), “Estimation of Tail-related Risk Measures for Heteroskedastic Financial Time Series: An Extreme Value Approach”, Journal of Empirical Finance, Vol.7, pp.271-300.
39.Mossin, J. (1966), “Equilibrium in a Capital Asset Market”, Econometrics, Vol.35, pp.768-783.
40.Pickands, J. (1975), “Statistical Inference Using Extreme Order Statistics”, The Annals of Probability, Vol. 3, pp.119-131.
41.RiskMetricsTM-Technical Document (1996), 4th edition, J.P. Morgan Inc.
42.Ross, Stephen A., (1976), “The Arbitrage Theory of Capital Asset Pricing”, Journal of Economic Theory, Vol.13, pp.341-360.
43.Sharpe, William F. (1964), “Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk”, Journal of Finance, Vol.19, pp.452-442.
44.Smith, R. (1985), “Maximum Likelihood Estimation in a Class of Non-regular Cases”, Biometrics, Vol.72, pp.67-90.
45.Treynor, Jack L. (1961), “Market Value, Time and Risk”, Unpublished.
46.Tsay, R. S. (2001), “Analysis of Financial Time Series”, New York, Wiley.