參考文獻
1.Tamaki T, Naomoto Y, Kimura S, Kawashima R, Shirakawa Y, Shigemitsu K, Yamatsuji T, Haisa M, Gunduz M, Tanaka N. Apoptosis in normal tissues induced by anti-cancer drugs. J.Int.Med.Res. 31: 6-16, 2003.
2.Yano H, Mizoguchi A, Fukuda K, Haramaki M, Ogasawara S, Momosaki S, Kojiro M. The herbal medicine sho-saiko-to inhibits proliferation of cancer cell lines by inducing apoptosis and arrest at the G0/G1 phase. Cancer Res. 54: 448-454, 1994.
3.Kao ST, Yeh CC, Hsie CC, Yang MD, Lee MR, Liu HS, Lin JG. The Chinese medicine Bu-Zhong-Yi-Qi-Tang inhibited proliferation of hepatoma cell lines by inducing apoptosis via G0/G1 arrest. Life Sci. 69: 1485-1496, 2001.
4.Deng WP, Chao MW, Lai WF, Sun C, Chung CY, Wu CC, Lin IH, Hwang JJ, Wu CH, Chiu WT, Chen CY, Redpath JL. Correction of malignant behavior of tumor cells by traditional Chinese herb medicine through a restoration of p53. Cancer Lett. 2005.
5.Zhang Z, Wang H, Li M, Agrawal S, Chen X, Zhang R. MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53. J Biol Chem. 279: 16000-16006, 2004.
6.Ferenc T, Lewinski A, Lange D, Niewiadomska H, Sygut J, Sporny S, Jarzab B, Salacinska-Los E, Kulig A, Wloch J. Analysis of P53 and P21WAF1 proteins expression in follicular thyroid tumors. Pol J Pathol. 55: 133-141, 2004.
7.Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420: 25-27, 1997.
8.Jones DL, Munger K. Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. J Virol. 71: 2905-2912, 1997.
9.Lu DW, El-Mofty SK, Wang HL. Expression of p16, Rb, and p53 proteins in squamous cell carcinomas of the anorectal region harboring human papillomavirus DNA. Mod Pathol. 16: 692-699, 2003.
10.Perry A, Anderl K, Borell TJ, Kimmel DW, Wang CH, O'Fallon JR, Feuerstein BG, Scheithauer BW, Jenkins RB. Detection of p16, RB, CDK4, and p53 gene deletion and amplification by fluorescence in situ hybridization in 96 gliomas. Am J Clin Pathol. 112: 801-809, 1999.
11.Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 11: 2090-2100, 1997.
12.Hwang SG, Lee D, Kim J, Seo T, Choe J. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem. 277: 2923-2930, 2002.
13.Alani RM, Munger K. Human papillomaviruses and associated maligancies. J. Clin. Oncol. 16: 330-337, 1998.
14.Chen CM, Shyu MP, Au LC, Chu HW, Cheng WT, Choo KB. Analysis of deletion of the integrated human papillomavirus 16 sequence in cervical cancer: a rapid multiplex polymerase chain reaction approach. J Med Virol. 44: 206-211, 1994.
15.Braun K, Ehemann V, Waldeck W, Pipkorn R, Corban-Wilhelm H, Jenne J, Gissmann L, Debus J. HPV18 E6 and E7 genes affect cell cycle, pRB and p53 of cervical tumor cells and represent prominent candidates for intervention by use peptide nucleic acids (PNAs). Cancer Lett. 209: 37-49, 2004.
16.Wilson R, Fehrmann F, Laimins LA. Role of the E1--E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31. J Virol. 79: 6732-6740, 2005.
17.Desaintes C, Goyat S, Garbay S, Yaniv M, Thierry F. Papillomavirus E2 induces p53-independent apoptosis in HeLa cells. Oncogene. 18: 4538-4545, 1999.
18.H ZH. Papillomavirus causing cancer:evasion from host-cell control in early events in carcinogenesis. J. Nat. cancer Int. 92: 690-698, 2000.
19.Werness BA., Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 248: 76-79, 1990.
20.Thomas M BL. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene. 10: 2943-2954, 1998.
21.Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature. 380: 79-82, 1996.
22.Ciechanover A, Schwartz AL. The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. Faseb J. 8: 182-191, 1994.
23.Hochstrasser M. Protein degradation or regulation: Ub the judge. Cell. 84: 813-815, 1996.
24.Smith SE, Koegl M, Jentsch S. Role of the ubiquitin/proteasome system in regulated protein degradation in Saccharomyces cerevisiae. Biol Chem. 377: 437-446, 1996.
25.Hengstermann A, Linares LK, Ciechanover A, Whitaker NJ, Scheffner M. Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc Natl Acad Sci U S A. 98: 1218-1223, 2001.
26.Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 243: 934-937, 1989.
27.Dyson N, Guida P, Munger K, Harlow E. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol. 66: 6893-6902, 1992.
28.Bagchi S, Raychaudhuri P, Nevins JR. Adenovirus E1A proteins can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for E1A trans-activation. Cell. 62: 659-669, 1990.
29.Bandara LR, Adamczewski JP, Hunt T, La Thangue NB. Cyclin A and the retinoblastoma gene product complex with a common transcription factor. Nature. 352: 249-251, 1991.
30.Jewers RJ, Hildebrandt P, Ludlow JW, Kell B, McCance DJ. Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. J Virol. 66: 1329-1335, 1992.
31.Jones DL, Alani RM, Munger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 11: 2101-2111, 1997.
32.Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Durr P. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene. 13: 2323-2330, 1996.
33.Barnard P, McMillan NA. The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-alpha. Virology. 259: 305-313, 1999.
34.Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, Vousden KH. p14ARF links the tumour suppressors RB and p53. Nature. 395: 124-125, 1998.
35.Zhou J, Sun XY, Stenzel DJ, Frazer IH. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology. 185: 251-257, 1991.
36.Franco EL, Villa LL, Ruiz A, Costa MC. Transmission of cervical human papillomavirus infection by sexual activity: differences between low and high oncogenic risk types. J Infect Dis. 172: 756-763, 1995.
37.Wheeler CM, Parmenter CA, Hunt WC, Becker TM, Greer CE, Hildesheim A, Manos MM. Determinants of genital human papillomavirus infection among cytologically normal women attending the University of New Mexico student health center. Sex Transm Dis. 20: 286-289, 1993.
38.Shah KV, H PM. Papillomavirus. Fields Virology. 1651, 1990.
39.Brouty-Boye D, Gresser I, Baldwin C. Reversion of the transformed phenotype to the parental phenotype by subcultivation of X-ray-transformed C3H/10T1/2 cells at low cell density. Int J Cancer. 24: 253-260, 1979.
40.Kenny PA. Bissell MJ. Tumor reversion: correction of malignant behavior by microenvironmental cues. Int J Cancer. 107: 688-695, 2003.
41.Sun C, Antonionio RJ, Redpath JL. Reversion of UVC-induced tumorigenic human hybrid cells to the non-tumorigenic phenotype. Eur J Cancer. 32A: 322-327, 1996.
42.Stanbridge EJ. Suppression of malignancy in human cells. Nature. 260: 17-20, 1976.
43.Lavrovsky VA, Guvakova MA, Lavrovsky YV. High frequency of tumour cell reversion to non-tumorigenic phenotype. Eur J Cancer. 28: 17-21, 1992.
44.Berger J, Garattini E, Hua JC, Udenfriend S. Cloning and sequencing of human intestinal alkaline phosphatase cDNA. Proc Natl Acad Sci U S A. 84: 695-698, 1987.
45.Mendonca MS, Antoniono RJ, Latham KM, Stanbridge EJ, Redpath JL. Characterization of intestinal alkaline phosphatase expression and the tumorigenic potential of gamma-irradiated HeLa x fibroblast cell hybrids. Cancer Res. 51: 4455-4462, 1991.
46.賴慶亮譯, 水野卓, 川合正允原著. 菇類的化學生化學. 國立編譯館, 1997.
47.丁懷謙. 食藥用菇多醣體之免疫生理活性. 食品工業, 32: 28-42, 2000.48.Song TY, Yen GC. Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. J Agric Food Chem. 51: 1571-1577, 2003.
49.臧穆, 蘇慶華. 我國台灣產靈芝屬新種樟芝. 雲南植物研究, 12: 395-396, 1990.
50.Zang M, S CH. Ganoderma camphoratum,a new taxon in genus Ganoderma from Taiwan. China.Acta Bot,Yunnanica. 12: 395-396, 1990.
51.Chang TT, Chou WN. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol.Res. 99: 756-758, 1995.
52.Wu SH, RL, Chang TT. Antrodia camphorata(niu-chang-chih),new combination of a medicinal fungus in Taiwan. Bot.Bull.Acad.Sin. 38: 273-275, 1997.
53.吳聲華.中華醫學會會刊. 第十九卷.中華民國九十四年二月.
54.陳勁初,陳清農,許勝傑,黃仕政,陳炎鍊. 台灣特有真菌-樟芝菌絲體之開發. Fung.Sci. 16: 7-22, 2001.
55.Mohacek-Grosev V, Bozac R, Puppels GJ. Vibrational spectroscopic characterization of wild growing mushrooms and toadstools. Spectrochim Acta A Mol Biomol Spectrosc. 57: 2815-2829, 2001.
56.Cherng IH, W DP, Chiang HC. Triterpenoids from Antrodia cinnamomea. Phytochem. 39: 613-616, 1996.
57.Huang KF, H WM, C HC. Phenyl compounds from Antrodia cinnamomea. The Chinese Pharmaceutical Journal. 53: 327-331, 2001.
58.Chen CH, Yang SW, Shen YC. New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum. J Nat Prod. 58: 1655-1661, 1995.
59.Shen YC, Wang YH, Chou YC, Chen CF, Lin LC, Chang TT, Tien JH, Chou CJ. Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata. Planta Med. 70: 310-314, 2004.
60.Hsiao G, Shen MY, Lin KH, Lan MH, Wu LY, Chou DS, Lin CH, Su CH, Sheu JR. Antioxidative and hepatoprotective effects of Antrodia camphorata extract. J Agric Food Chem. 51: 3302-3308, 2003.
61.Lee IH, Huang RL, Chen CT, Chen HC, Hsu WC, Lu MK. Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol Lett. 209: 63-67, 2002.
62.Liu JJ, Huang TS, Hsu ML, Chen CC, Lin WS, Lu FJ, Chang WH. Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicol Appl Pharmacol. 201: 186-193, 2004.
63.Hseu YC, Chang WC, Hseu YT, Lee CY, Yech YJ, Chen PC, Chen JY, Yang HL. Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sci. 71: 469-482, 2002.
64.Chiou HL, Wu MF, Liaw YC, Cheng YW, Wong RH, Chen CY, Lee H. The presence of human papillomavirus type 16/18 DNA in blood circulation may act as a risk marker of lung cancer in Taiwan. Cancer. 97: 1558-1563, 2003.
65.Latham KM. Stanbridge EJ. Examination of the oncogenic potential of a tumor-associated antigen, intestinal alkaline phosphatase, in HeLa x fibroblast cell hybrids. Cancer Res. 52: 616-622, 1992.
66.Hseu YC, Yang HL, Lai YC, Lin JG, Chen GW, Chang YH. Induction of apoptosis by Antrodia camphorata in human premyelocytic leukemia HL-60 cells. Nutr Cancer. 48: 189-197, 2004.
67.SH Lin, I CC, CN Weng, CM Chen. Effects of a Chinese Herbal Medicine Yigan Kang on TEGV Infectivity in Tissue Culture. J.Chinese Society of Veterinary Science. 26: 110-116, 2000.
68.Mendonca MS, Desmond LA, Temples TM, Farrington DL, Mayhugh B. M. Loss of chromosome 14 increases the radiosensitivity of CGL1 human hybrid cells but lowers their susceptibility to radiation-induced neoplastic transformation. Mutagenesis. 15: 187-193, 2000.