1.--。2009。植物工廠的事例集。農林水產省與經濟產業省彙編。日本。
2.七维高科。2009。1stOpt使用手冊。中國。
3.方煒(譯)。2011。完全控制型植物工廠。初版。台北: 財團法人豐年社。
4.方煒、饒瑞佶。2004。高亮度發光二極體在生物產業的應用. 中華農學會報. 5: 432-446.5.方煒。2009。台灣發展精緻農業不要忽略了推動植物工廠。2009年農機與生機論文發表會。372-376。宜蘭: 中華農業機械學會。
6.方煒。植物工廠是新世紀的關鍵產業。中國時報C6版。2010年1月6日。
7.王慧媛。2010。環境控制下波士頓萵苣兩階段立體化栽培模式之探討。碩士論文。台北: 國立台灣大學生物產業機電工程學研究所。8.古在豐樹。2009。太陽光型植物工廠。1版。日本: Ohmsha株式會社。
9.李光軒。1998。調整光質的方法對波士頓萵苣種苗栽培之影響。碩士論文。台北: 國立台灣大學生物產業機電工程學研究所。10.邱偉豪。2009。控制環境內波士頓萵苣立體化栽培之研究。碩士論文。台北: 國立台灣大學生物產業機電工程學研究所。11.高辻正基。1986。野菜工廠。4版。日本: 丸善株式會社。
12.高倉直。2009。現在為何需要植物工廠?─糧食與能源自給的獨立溫室計畫(Autonomous House Project)─。農業與園藝84(11):1063-1067。
13.高德錚。1986。水耕栽培-精緻蔬菜生產技術之開發。台中區農推專訓56: 22-31。
14.張祖亮。1998。養液栽培之應用技術。種苗生產自動化技術通訊。第三期第 98003號。種苗生產自動化技術服務團。台北: 財團法人農業機械化研究發展中心。
15.許安仁。2000。自調式類神經PID 控制於超音波馬達之應用。碩士論文。桃園: 國立中央大學機械工程研究所。16.蔡素蕙、高德錚、黃山內。1987。冬季蔬菜無機氮含量之研究。台中: 農業改良場研究彙報。
17.饒瑞佶、方煒。2003a。光量與光週期對馬鈴薯組培苗生長的影響。九十二年農業機械論文發表會。台北。中華民國。
18.饒瑞佶、方煒。2003b。光質對於彩色海芋組培苗生長之影響。九十二年農業機械論文發表會。台北。中華民國。
19.Albright, L. D., A. J. Both, R. W. Langhans, and E. F. Wheeler. 1999. Dimensionless growth curves as a simple approach to predict the vegetative growth of lettuce. Acta Hort. 507: 293-300.
20.Al-Kaisi, M., L. J. Brun, and J. W. Enz. 1989. Transpiration and evapotranspiration from maize as related to leaf area index. Agric. and forest meteorology 48: 111-116.
21.Alokam, S., C. C. Chinnappa, and D. M. Reid. 2002. Red/far-red light mediated stem elongation and anthocyanin accumulation in Stellaria longipes: differential response of alpine and prairie ecotypes. Can. J. Bot. 80(1): 72-81.
22.Al-Wakeel, S. A. M., and A. A. Hamed. 1996. Light-quality effect on growth and some biochemical aspects of mild-stressed Cucurbita pepo L. Egyptian J. Bot. 36: 217-233.
23.Ballare, C. L. 1999. Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci. 4(3): 97-102.
24.Barnes, S. A., R. B. McGrath, and N. -H. Chua. 1997. Light signal transduction in plants. Trends Cell Biol. 7: 21-26.
25.Both A. J., L. D. Albright, and R. W. Langhans. 1998. Coordinated management of daily PAR integral and carbon dioxide for hydroponic lettuce production. Acta Hort. 456: 45-51.
26.Both, A. J., L. D. Albright, and R. W. Langhans. 1999. Design of a demonstration greenhouse operation for commercial hydroponic lettuce production. ASAE Paper. 99-4123.
27.Both, A. J., L. D. Albright, R. W. Langhans, R. A. Reiser, and B. G. Vinzant. 1997. Hydroponic lettuce production influenced by integrated supplemental light levels in a Controlled environment agriculture facility: experimental results. Acta Hort. 418: 45-51.
28.Brazaityté, A., R. Ulinskaité, P. Duchovskis, G. Samuoliené, J. B. Siksnianienė, J. Jankauskiené, G. Sabqieviené, K. Baranouskis, G. Staniené, G. Tamulaitis, Z. Bliznikas, and A. Zukauskas. 2006. Optimization of lighting spectrum for photosynthetic system and productivity of lettuce by using light-emitting diodes. Acta Hort. 711: 183-188.
29.Briggs, W. R., and Christie, J. M. 2002. Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7: 204-210.
30.Chave, J., R. Condit, S. Lao, J. Caspersen, R. Foster, and S. Hubbell. 2003. Spatial and temporal variation of biomass in a tropical forest: results from alarge census plot in Panama. Journal of Ecology 91: 240-252.
31.Christie, J. M. 2007. Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58: 21-45.
32.Chung, J. P., C. Y. Huang, and T. E. Dai. 2010. Spectral effects on embryogenesis and plant-let growth of Oncidium ‘Gower Ramsey’. Sci. Hort. 124: 511-516.
33.Ciolkosz, D. D., L. D. Albright, and A. J. Both. 1999. Modeling evapotranspiration in a greenhouse lettuce crop. Transactions of the ASAE.
34.Ciolkosz, D. E., L. D. Albright, and A. J. Both. 1998. Characterizing evapotranspiration in a greenhouse lettuce crop. Acta Horticulturae. 456: 255-261.
35.Cosgrove, D. J. 1981. Rapid suppression of growth by blue light. Plant Physiol. 67: 584-590.
36.Demmig-Adams, B., and W. W. Adams. 1992. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599-626.
37.Dougher, T. A. O., and B. Bugbee. 2001. Evidence for yellow light suppression of lettuce growth. Photochemistry and Photobiology 73: 208-212.
38.Drozdova, I. S., V. V. Bondar, N. G. Bukhov, A. A. Kotov, L. M. Kotova, S. N. Maevskaya, and A. T. Mokronosov. 2001. Effects of light spectral quality on morphogen-esis and source–sink relations in radish plant. Russ. J. Plant Physiol. 48: 415-420.
39.Fan, X. X., Z. G. Xu, X. Y. Liu, C. M. Tang, L. W. Wang, and X. L. Han. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Hort. 153: 50-55.
40.Fang, W., and R. C. Jao. 2002. Development of a flexible lighting system for plant related research using super bright red and blue light-emitting diodes. Acta Hort. 578: 133-139.
41.Folta, K. M. 2004. Green light stimulates early stem elongation, antagonizing lightmediated growth inhibition. Plant Physiol. 135: 1407-1416.
42.Frechilla, S., L. D. Talbott, R. A. Bogomolni, and E. Zeiger. 2000. Reversal of blue lightstimulated stomatal opening by green light. Plant and Cell Physiol. 41: 171-176.
43.Giliberto, L., G. Perrotta, P. Pallara, J. L. Weller, P. D. Fraser, P. M. Bramley, A. Fiore, M. Tavazza, and G. Giuliano. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137: 199-208.
44.Goins, G. D. 2001. Performance of salad-type plants grown under narrowspectrum light-emitting diodes in a controlled environment. Proceedings of Bioastronautics Investigators'' Workshop, Jan. 2001, Galveston, TX.
45.Goto, E., A. J. Both, L. D. Albright, R. W. Langhans, and A. R. Leed. 1996. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics. Acta Hort. 440: 205-210.
46.Govindjee, R. 1964. Emerson enhancement effect in chloroplast reactions. Plant physiol. 39: 10-14.
47.Heinen, M. 1999. Analytical growth equations and their Genstat 5 equivalents. Netherlands Journal of Agricultural Sci. 47: 67-89.
48.Heo, J., C. Lee, D. Chakrabarty, and K. Paek. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a Light-Emitting Diode (LED). Plant Growth Regul. 38: 225-230.
49.Hoffmann, W., and H. Poorter. 2002. Avoiding bias in calculations of relative growth rate. Annals of Botany 90: 37-42.
50.Hogewoning, S. W., P. Douwstra, G. Trouwborst, W. van Ieperen, and J. Harbinson. 2010. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J. Exp. Bot. 61: 1267-1276.
51.Hopkins, W. G., and N. P. A. Hunter. 2008. Introduction to plant physiology. 4th ed., London: Wiley and Son.
52.Hunt, R. 1981. The fitted curve in plant growth studies. Mathematics and Plant Physiology 283-298. Academic Press. London.
53.Hunt, R. 1982. Plant Growth Curves: The Functional Approach to Plant Growth Analysis. Edward Arnold, London.
54.Islam, M. A., D. Tarkowská, J. L. Clarke, D. Blystad, H. R. Gislerd, S. Torre, and J. E. Olsena. 2014. Impact of end-of-day red and far-red light on plant morphologyand hormone physiology of poinsettia. Scientia Hort. 174: 77-86.
55.Jao, R. C., and W. Fang. 2004. Effects of frequency and duty ratio on the growth of potato plantlets in vitro using LEDs. HortScience 39: 375-379.
56.Johkan, M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45: 1809-1814.
57.Kataoka, I., A. Sugiyama, and K. Beppu. 2003. Role of ultraviolet radiation in accumulation of anthocyanin in berries of ‘Gros Colman’ grapes (Vitis vinifera L.). J. Japan Soc. Hort. Sci. 72: 1-6.
58.Keller, M., and G. Hrazdina. 1998. Interaction of nitrogen availability during bloom and light intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening. Am. J. Enol. Vitic. 49: 341-349.
59.Kim H. H., R. M. Wheeler, and J. C. Sager. 2006. Evaluation of lettuce growth using supplemental green light with red and blue light-emitting diodes in a controlled environment: a review of research at Kennedy Space Center. Acta Hort. 711: 111-119.
60.Kim, H. H., G. D. Goins, R. M. Wheeler, and J. C. Sager. 2004a. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. HortScience 39: 1617-1622.
61.Kim, H. H., R. M. Wheeler, Kim, J. C. Sager, and G. D. Gains. 2004b. A comparison of growth and photosynthetic characteristics of lettuce grown under red and blue light-emitting diodes (LEDs) with and without supplemental green LEDs. Acta Hort. 659: 467-475.
62.Klein, R. M. 1990. Failure of supplementary ultraviolet radiation to enhance flowercolor under greenhouse conditions. HortScience 25(3): 307-308.
63.Klein, R. M. 1992. Effects of green light on biological systems. Biol. Rev. 67: 199-284.
64.Kopsell, D. A., and D. E. Kopsell. 2008. Genetic and environmental factors affecting plant lutein/zeaxanthin. Agro Food Ind. Hi-Tech. 19: 44-46.
65.Kozai, T., K. Ohyama, and C. Chun. 2006. Commercialized closed systems with artificial lighting for plant production. Acta Hort. 711: 61-70.
66.Lefsrud, M. G., D. A. Kopsell, and C. E. Sam. 2008. Irradiance from distinct wavelengthlight-emitting diodes affect secondary metabolites in Kale. HortScience 43(7): 2243-2244.
67.Li, Q., and C. Kubota. 2009. Effects of supplemental light quality on growth and phyto-chemicals of baby leaf lettuce. Environ. Exp. Bot. 67(1): 59-64.
68.Lin, C., M. Ahmad, D. Gordon, and A. R. Cashmore. 1995. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Proc. Natl. Acad. Sci. 92: 8423-8427.
69.Lin, Y., and C. L. Cheng. 1997. A chlorate-resistant mutant defective in the regulation of nitrate reductase gene expression in Arabidopsis defines a new HY locus. Plant Cell 9: 21-35.
70.Liu, H., X. Yu, K. Li, J. Klejnot, H. Yang, D. Lisiero, and C. Lin. 2008. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Sci. 322: 1535-1539.
71.McCree, K. J. 1972. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorol. 9: 191-216.
72.McMahon, T. A., and J. T. Bonner. 1983. On Size and Life. Scientific American Books, New York, New York.
73.McNellis, T. W., and X. W. Deng. 1995. Light control of seedling morphogenetic pattern. The Plant Cell 7: 1749-1761.
74.Moorby, J., and C.J. Graves. 1980. Root and air temperature effects on growth and yield of tomatoes and lettuce. Acta Hort. 98: 29-37.
75.Ohashi-Kaneko, K., Takase, M., Kon, N., Fujiwara, K., and Kurata, K. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Control Biol. 45: 189-198.
76.Okamoto, K., T. Yanagi, and S. Kondo. 1997. Growth and morphogenesis of lettuce seedlings raised under different combinations of red and blue light. Acta Hort. 435: 149-158.
77.Okamoto, K., T. Yanagi, S. Takita, M. Tananka, T. Higuchi, Y. Ushida, and H. Watamabe. 1996. Development of plant growth apparatus using blue and red as artificiallight source. Acta Hort. 440: 111-116.
78.Paine, C. E. T., K. E. Harms, S. A. Schnitzer, and W. P. Carson. 2008. Weak competition among tropical tree seedlings: implications for species coexistence. Biotropica 40: 432-440.
79.Paine, C. E. T., T. R. Marthews, D. R. Vogt, D. Purves, M. Rees, A. Hector, and L. A. Turnbull. 2012. How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution 3: 245-256.
80.Perez-Balibrea, S., D. A. Moreno, and C. Garcia-Viguera. 2008. Influence of lightonhealthpromoting phytochemicals of broccoli sprouts. J. Sci. Food Agric. 88: 904-910.
81.Pinho, P., R. Lukkala, L. Sarkka, E. Tetri, R. Tahvonen, and L. Halonen. 2007. Evaluation of lettuce growth under multi-spectral-component supplemental solid state lighting in greenhouse Environment. International Review of Electrical Engineering 2: 6.
82.Preece, J. E., and P. E. Read. 1993. The biology of horticulture: an introductory textbook. John Wiley & Sons, Incorporation, New York.
83.Ramalho, J. C., N. C. Marques, J. N. Semedo, M. C. Matos, and V. L. Quartin. 2002. Photosynthetic performance and pigment composition of leaves fromtwo tropical species is determined by light quality. Plant Biol. 4: 112-120.
84.Ricklefs, R. E. 2010. Embryo growth rates in birds and mammals. Functional Ecology 24: 588-596.
85.Salisbury, F. B., and C. W. Ross. 1992. Plant physiology. Wadsworth Publishing Company. Belmont.
86.Samuoliene, G., A. Brazaityte, R. Sirtautas, A. Novickovas, and P. Duchovskis. 2012. The effect of supplementary led lighting on the antioxidant and nutritionalproperties of lettuce. Acta Hort. 952: 835-841.
87.Schmitt, J., and R. D. Wulff. 1993. Light spectral quality, phytochrome and plant competition. Trends Ecol. Evol. 8: 47-51.
88.Schuerger, A.C., C. S. Brown, and E. C. Stryjewski. 1997. Anatomical features of pepperplants (Capsicum annuum L.) grown under red light-emitting diodes supple-mented with blue or far-red light. Ann. Bot. 79(3): 273-282.
89.Schwartzbach, S. D. 1990. Photocontrol of organelle biogenesis in Euglena. Photochemistry and Photobiology 51: 231-254.
90.Senger, H. 1982. The effect of blue light on plants and microorganisms. Phytochem. Photobiol. 35: 911-920.
91.Shimazaki, K.-I., M. Doi, S. M. Assmann, and T. Kinoshita. 2007. Light regulation of stomatal movement. Ann. Rev. Plant Biol. 58: 219-247.
92.Siefermann-Harms, D. 1985. Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochimica et Biophysica Acta 811: 325-355.
93.Siefermann-Harms, D. 1987. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiologia Plantarum 69: 561-568.
94.Sillett, S. C., R. Van Pelt, G. W. Koch, A. R. Ambrose, A. L. Carroll, M. E. Antoine, and B. M. Mifsud. 2010. Increasing wood production through old age in tall trees. Forest Ecology and Management 259: 976-994.
95.Smith, H. 1993. Sensing the light environment: the functions of the phytochrome family. R.E. Kendrick and G.H.M. Kronenberg (eds.). Photomorphogenesisin plants. Kluwer Academic Publ. Dordrecht. 377-416.
96.Sun, J., J. N. Nishio, and T. C. Vogelmann. 1998. Green light drives CO2 fixation deep within leaves. Plant Cell Physiol. 39: 1020-1026.
97.Taiz, L. and E. Zeiger. 2006. Plant physiology. The Benjamin/Cummings Publishings Company. Incorporation. Redwood City.
98.Takemiya, A., S.-i. Inoue, M. Doi, T. Kinoshita, and K.-i Shimazaki. 2005. Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17: 1120-1127.
99.Talbott, L. D., G. Nikolova, A. Ortiz, I. Shmayevich, and E. Zeiger. 2002. Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. Amer. J. of Bot. 89: 366-368.
100.Talbott, L. D. 2006. Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassiumdependent, morning phase of movement. Plant Cell Physiol. 47: 332-339.
101.Talbott, L. D., G. Nikolova, A. Ortiz, I. Shmayevitch, and E. Zeiger. 2002. Green light reversal of blue light-stimulated stomatal opening is found in a wide range of plant species. Am. J. Bot. 89: 366-368.
102.Tei, F., P. Benincasa, and M. Guiducci. 2003. Critical Nitrogen Concentration in Lettuce. XXVI International Horticultural Congress: Toward Ecologically Sound Fertilization Strategies for Field Vegetable Production 627: 187-194.
103.Terashima, I., T. Fujita, T. Inoue, W. S. Chow, and R. Oguchi. 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 50: 684-697.
104.Terfa, M. T., K. A. Solhaug, H. R. Gislerd, J. E. Olsen, and S. Torre. 2013. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa hybrida but does not affect time to flower opening. Physiol. Plant 148: 146-159.
105.Thornley, J., and J. France. 2007. Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences. CAB International, Oxon. UK.
106.Thomas, S. 1996. Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees. American Journal of Botany 83: 556-566.
107.Tsormpatsidis, E., R. G. C. Henbest, F. J. Davis, N. H. Battey, P. Hadley, and A. Wagstaffe. 2008. UVirradiance as amajor influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’ grown under polyethylene films. Environ. Exp. Bot. 63: 232-239.
108.Ventrella, D., P. Santamaria, V. Magnifico, F. Serio, A. De Boni, and S. Cordella. 1993. Influenza dell’azoto sull’accumulo dei nitrati in foglie di rucola (Eruca sativa Miller)allevata a differenti Condizioni di temperatura e irradianza. Riv. di Agron. 27: 653-658.
109.Vergeer, L. H. T., T. L. Aarts, and J. D. Degroot. 1995. The wasting disease and the effect of abiotic factors (light-intensity, temperature, salinity) and infection with labyrinthula-zosterae on the phenolics content of zostera-marina shoots. Aquat. Bot. 52: 35-44.
110.Voipio, I., and J. Autio. 1995. Responses of red-leaved lettuce to light intensity, UV-Aradiation and root zone temperature. Acta Hort. 399: 183-187.
111.Wang, Y., and K. M. Folta. 2013. Contributions of green light to plant growth and development. Am. J. Bot. 100: 70-78.
112.Wenke, L., and Y. QiChang. 2012. Effects of day-night supplemental UV-A on growth, photosynthetic pigments and antioxidant system of pea seedlings in glasshouse. Afr. J. Biotechnol. 11(82): 14786-14791.
113.Whitelam, G., and K. Halliday. 2007. Light and Plant Development. Blackwell Publishing, Oxford.
114.Xu, H. L., Q. Xu, F. L. Li, Y. Feng, F. Qin, and W. Fang. 2012. Applications of xerophytophysiology in plant production—LED blue light as a stimulus improved the tomato crop. Scientia Hort. 148: 190-196.
115.Yanagi, T., K. Okamoto, and S. Takita. 1996. Effects of blue, red, and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. Acta Hort. 440: 117-122.
116.Yanovsky, M. J., T. M. Alconada-Magliano, M. A. Mazzella, C. Gatz, B. Thomas, and J. J. Casal. 1998. A affects stem growth, anthocyanin synthesis, sucrosephosphate-synthase activity and neighbour detection in sunlight-grown potato. Planta 205: 235-241.
117.Yorio, N. C., R. M. Wheeler, G. D. Goins, M. M. Sanwo-Lewandowski, C. L. Mackowiak, C. S. Brown, J. C. Sager, and G. W. Stutte. 1998. Blue light requirement for crop plantsused in bioregenerative life support system. Life Support Biosph. Sci. 5(2): 119-128.
118.Zeiger, E., and P. K. Hepler. 1977. Light and stomatal function: blue light stimulates swelling of guard cell protoplasts. Sci. 196: 887-889.
119.Zhou, Y., and B. R. Singh. 2002. Red light stimulates flowering and anthocyanin biosynthesis in American cranberry. Plant Growth Regul. 38: 165-171.