|
[1] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing Surveys (CSUR), 38(4), 2006. [2] T.B. Moeslund and E. Granum. A survey of computer vision-based human motion capture. Computer Vision and Image Understanding, 81:231-268, 2001. [3] W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 34(3):334-352, 2004. [4] C.R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland. P¯nder: Real-Time Tracking of the Human Body. 19:780{785, 1997. [5] C. Stau®er and W.E.L. Grimson. Adaptive background mixture models for real-time tracking. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2:246-252, 1999. [6] Z. Zivkovic. Improved adaptive Gaussian mixture model for background subtraction. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, volume 2, pages 28-31, 2004. [7] L. Wang, T. Tan, W. Hu, and H. Ning. Automatic gait recognition based on statistical shape analysis. IEEE transactions on image processing, 12(9):1120{1131, 2003. [8] D.T. Lin and H.C. Lee. Intelligent surveillance system for halt detection and people counting. Journal of Information Technology and Applications, 2(3):133-142, 2008. [9] Q. Xiong and C. Jaynes. Multi-resolution background modeling of dynamic scenes using weighted match ¯lters. In Proceedings of the ACM 2nd international workshop on Video surveillance & sensor networks, pages 88{96. ACM New York, NY, USA, 2004. [10] R.E. Kalman. A new approach to linear ¯ltering and prediction problems. Journal of Basic Engineering, 82(1):35-45, 1960. [11] R. Rosales and S. Sclaro®. 3D trajectory recovery for tracking multiple objects and trajectory guided recognition of actions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2:117-123, 1999. [12] D.T. Lin and L.W. Liu. Object tracking and people counting at multiple distances. 2008. [13] H. Fujiyoshi, A.J. Lipton, and T. Kanade. Real-time human motion analysis by image skeletonization. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS E SERIES D, 87(1):113-120, 2004. [14] R.T. Collins, A.J. Lipton, H. Fujiyoshi, and T. Kanade. Algorithms for cooperative multisensor surveillance. Proceedings of the IEEE, 89(10):1456{1477, 2001. [15] E. Paek, C.H. Park, M.S. Ki, K.J. Park, and J.K. Paik. Multiple-view object tracking using metadata. volume 1, pages 12-17, 2007. [16] Y.T. Hsu, J.W. Hsieh, H.F. Kao, and H.Y.M. Liao. Human behavior analysis using deformable triangulations. In 2005 IEEE 7th Workshop on Multimedia Signal Processing, pages 1-4, 2005. [17] J.W. Hsieh, Y.T. Hsu, H.Y.M. Liao, and C.C. Chen. Video-based human movement analysis and its application to surveillance systems. Multimedia, IEEE Transactions on, 10(3):372-384, 2008. [18] S.T. Stillman, R. Tanawongsuwan, and I.A. Essa. A System for Tracking and Recognizing Multiple People with Multiple Camera. [19] A. Elgammal, R. Duraiswami, and L.S. Davis. E±cient non-parametric adaptive color modeling using fast gauss transform. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 563-570. Citeseer, 2001. [20] I. Pavlidis, V. Morellas, P. Tsiamyrtzis, and S. Harp. Urban surveillance systems: From the laboratory to the commercial world. Proceedings of the IEEE, 89(10):1478-1497, 2001. [21] Q. Cai and J.K. Aggarwal. Tracking human motion using multiple cameras. In International Conference on Pattern Recognition, volume 13, pages 68-72, 1996. [22] L.-J. Zhu, J.-N. Hwang, and H.-Y. Cheng. Tracking of Multiple Objects Across Multiple Cameras with Overlapping and Non-Overlapping Views. In Technical Report, 2009. [23] S.M. Khan and M. Shah. A multiview approach to tracking people in crowded scenes using a planar homography constraint. Lecture Notes in Computer Science, 3954:133-146, 2006. [24] K. Dimitropoulos, N. Grammalidis, D. Simitopoulos, N. Pavlidou, and M. Strintzis. Aircraft Detection and Tracking Using Intelligent Cameras. In IEEE International Conference on Image Processing, pages 594-597, 2005. [25] G.P. Stein. Tracking from multiple view points: Self-calibration of space and time. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., volume 1, pages 521-527, 1999. [26] T. Fukuda, T. Suzuki, F. Kobayashi, F. Arai, Y. Hasegawa, and M. Negi. Seamless tracking system with multiple cameras. Industrial Electronics Society, 2000. IECON 2000. 26th Annual Confjerence of the IEEE, 2, 2000. [27] Q. Cai and J.K. Aggarwal. Tracking human motion in structured environments using a distributed-camera system. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 21(11):1241-1247, 1999. [28] A. Koutsia, T. Semertzidis, K. Dimitropoulos, N. Grammalidis, A. Kantidakis, K. Georgouleas, and P. Violakis. Tra±c Monitoring using Multiple Cameras, Homographies and Multi-Hypothesis Tracking. In 3DTV Conference, 2007, pages 1-4, 2007. [29] M. Ringer, J. Lasenby, Signal Processing Group, Engineering Dept, and University of Cambridge. Modelling and tracking articulated motion from multiple camera views. Citeseer, 2000. [30] O. Javed, K. Sha¯que, and M. Shah. Appearance modeling for tracking in multiple non-overlapping cameras. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, volume 2, pages 26-33, 2005. [31] V. Kettnaker and R. Zabih. Bayesian multi-camera surveillance. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., volume 2, pages:237-259, 1999. [32] R.C. Gonzalez and R.E. Woods. Digital Image Processing 2/e. Prentice Hall, 2002. [33] A. McAndraw. Introduction to Digital Image Processing with MATLAB. Thomson, 2004. [34] C.E. Erdem, A.M. Tekalp, and B. Sankur. Video object tracking with feedback of performance measures. IEEE Transactions on Circuits and Systems for Video Technology, 13(4):310-324, 2003. [35] H. Luo and A. Eleftheriadis. Model-based segmentation and tracking of head-and-shoulder video objects for real time multimedia services. IEEE Transactions on Multi-media, 5(3):379-389, 2003. [36] C. Kim and J.N. Hwang. Fast and automatic video object segmentation and tracking forcontent-based applications. IEEE Transactions on Circuits and Systems for VideoTechnology, 12(2):122-129, 2002. [37] L. Lee and W.E.L. Grimson. Gait analysis for recognition and classification. In Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 2002. Proceedings, pages:148-155, 2002. [38] R. Tanawongsuwan and A. Bobick. Modelling the e®ects of walking speed on appearance-based gait recognition. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages 783-792, 2004. [39] D.C. Tao, X.L. Li, X.D. Wu, and S.J. Maybank. General tensor discriminant analysis and gabor features for gait recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(10):1700-1715, 2007. [40] J.E. Boyd. Video phase-locked loops in gait recognition. In Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001. Proceedings, volume 1, pages 696-703, 2001. [41] J.A. Hartigan. Clustering algorithms. John Wiley & Sons, Inc. New York, NY, USA, 1975. [42] C. Li, X. Ding, and Y. Wu. Automatic text location in natural scene images. In Document Analysis and Recognition, 2001. Proceedings. Sixth International Conference on, pages:1069-1073, 2001. [43] R. Hartley and A. Zisserman. Multiple view geometry in computer vision 2/e. Cambridge, 2003. [44] S. Khan and M. Shah. Consistent labeling of tracked objects in multiple cameras with overlapping ¯elds of view. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(10):1355-1360, 2003. [45] H. Zeng, X.M. Deng, and Z.Y. Hu. A new normalized method on line-based homography estimation. Pattern Recognition Letters, 29:1236-1244, 2008. [46] A. Senior, A. Hampapur, Y. L. Tian, L. Brown, S. Pankanti, and R. Bolle. Appearance models for occlusion handling. Image and Vision Computing, 24(11):1233-1243, 2006.
|